Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (обычно физических), которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания.

Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля.

Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса
Петля гистерезиса для триггера Шмитта имеет прямоугольный вид.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений).

Благодаря анизотропии, M как бы удерживается некоторым внутренним полем HA (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии.

Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA).

При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H, Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc может быть существенно меньше эффективного поля анизотропии формы.

В электронике и электротехнике используются устройства, обладающие магнитным — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении.

Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем.

При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предистории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pост, при E = 0
  • значение поля EKt(коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость.

При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая полностью со временем не исчезает.

Как при неупругом, так и вязкоупругом поведении величина ΔU — энергия упругой деформации не зависит от амплитуды деформации и меняется с частотой изменения нагрузки.

Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису.

Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным.

Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводит к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется, ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др.

интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы.

Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики.

Позднее, в 1983 году появилась монография [1], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определенные на достаточно богатом функциональном пространстве(напр. пространстве непрерывных функций), действующие в некоторое функциональное пространство.

Свойства

Простое параметрическое описание различных петель гистерезиса можно найти в работе[2]. Замена гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет получить кусочно-линейные петли гистерезиса, часто встречающиеся в дискретной автоматике.

Литература

См. также

Обменное смещение — как особенность петель гистерезиса.

Wikimedia Foundation. 2010.

Источник: https://dic.academic.ru/dic.nsf/ruwiki/1016749

Петля гистерезиса

Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.

Общие понятия гистерезиса

Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.

Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

Механизм возникновения петли гистерезиса

Сам по себе гистерезис представляет собой кривую, отображающую измененный магнитный момент вещества, на которое воздействует периодически изменяющаяся напряженность поля. Когда магнитное поле воздействует на ферромагнетики, то изменение их магнитного момента наступает не сразу, а с определенной задержкой.

В каждом ферромагнетике изначально присутствует самопроизвольная намагниченность. Сам материал включает в свой состав отдельные фрагменты, каждый из которых обладает собственным магнитным моментом. При направленности этих моментов в разные стороны, значение суммарного момента оказывается равным нулю в результате взаимной компенсации.

Если на ферромагнетик оказать воздействие магнитным полем, то все моменты, присутствующие в отдельных фрагментах (доменах) будут развернуты вдоль внешнего поля. В итоге, в материале образуется некоторый общий момент, направленный в одну сторону.

Если внешнее действие поля прекращается, то домены не все окажутся в изначальном положении. Для этого потребуется воздействие достаточно сильного магнитного поля, предназначенного для разворота доменов. Такому развороту создают препятствия наличие примесей и неоднородность материала.

Поэтому материал имеет некоторую остаточную намагниченность, даже при отключенном внешнем поле.

Для снятия остаточного магнитного момента, необходимо приложение действия поля в противоположном направлении. Напряженность поля должна иметь величину, достаточную, чтобы выполнить полное размагничивание материала. Такая величина известна как коэрцитивная сила. Дальнейшее увеличение магнитного поля приведет к перемагничиванию ферромагнетика в противоположную сторону.

Когда напряженность поля достигает определенного значения, материал становится насыщенным, то есть магнитный момент больше не увеличивается. При снятии поля вновь наблюдается наличие остаточного момента, который снова можно убрать. Дальнейшее увеличение поля приводит к попаданию в точку насыщения с противоположным значением.

Читайте также:  Выбор кабеля для электропроводки - основные разновидности

Таким образом, на графике появляется петля гистерезиса, начало которой приходится на нулевые значение поля и момента. В дальнейшем, первое же намагничивание выводит начало петли гистерезиса из нуля и весь процесс начинает происходить по графику замкнутой петли.

Источник: https://electric-220.ru/news/petlja_gisterezisa/2016-06-10-974

Что такое петля гистерезиса?

Биологические и физические системы способны мгновенно откликаться на приложенное к ним воздействие. Если рассмотреть это явление на временной оси координат, то становится заметно, что отклик зависит от предыстории системы и ее текущего состояния. График, который наглядно демонстрирует это свойство систем, получил название петли гистерезиса, которая отличается остроугольной формой.

Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

Оригинальная форма петли обусловлена эффектом насыщения и неравномерностью траектории между соседними расстояниями. Эффект гистерезиса имеет кардинальные отличия от инерционности, с которой его часто путают, забывая о том, что монотонное сопротивление существенно отличается от мгновенного сопротивления на воздействие.

Петля гистерезиса является циклом, в ходе которого часть свойств системы используются независимо от воздействий, а часть – отправляется на повторную проверку.

В физике наиболее часто системы сталкиваются со следующими видами гистерезиса:

  • Магнитный – отражает зависимость между векторами напряжения магнитного поля и намагничивания в веществе. Это явление объясняет существование постоянных магнитов.
  • Сепнгетоэлектрический – зависимость между поляризацией сегнетоэлектриков и изменения внешнего электрического поля.
  • Упругий – зависимость деформации упругих материалов от воздействия высоких давлений. Это явление лежит в основе великолепных механических характеристик изделий из кованого метала.

Упругий гистерезис встречается двух основных видов – статический и динамический. В первом случае петля будет равномерной, во втором – постоянно меняющейся.

В электротехнике широко применяются устройства, в основе которых лежат магнитные взаимодействия. Наиболее распространение получили магнитные носители данных. Понимание гистерезиса необходимо для подавления в них шумов, таких как быстрые колебания или дребезжание контактов.

В большинстве электронных приборов наблюдается явление теплового гистерезиса. В процессе работы устройства нагреваются, а после охлаждения ряд характеристик уже не могут принять первоначальные явления.

Так, в процессе нагрева происходит расширение микросхем и печатных плат, полупроводниковых кристаллов. В результате развивается механическое напряжение, воздействие которого на элементы системы сохраняется после остывания. Особенно ярко тепловой гистерезис проявляется в высокоточных источниках опорного напряжения.

Источник: https://Voltiq.ru/wiki/hysteresis-loop/

Магнитный гистерезис

Если предварительно размагниченный образец ферромагнитного материала подвергнуть намагничиванию до состояния технического насыщения, то с увеличением напряженности магнитного поля Н магнитная индукция образца В будет изменяться в соответствии с кривой ОАБ (рисунок 2.2).

Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

Рисунок 2.2 – Предельная петля магнитного гистерезиса

В точке А при H = Hs магнитная индукция образца достигнет индукции насыщения Bs. При уменьшении напряженности поля Н намагниченность образца уменьшается по кривой БАBr, и при Н = 0 образец будет обладать некоторой индукцией, величина которой будет отлична от нуля.

Эта индукция называется остаточной и обозначается Вr.

Остаточная индукция (остаточная намагниченность) обусловлена тем, что при размагничивании, когда Н = 0, магнитные моменты доменов оказываются ориентированными вдоль оси легкого намагничивания, направление которой близко к направлению внешнего.

Для достижения полного размагничивания образца к нему необходимо приложить противоположное по знаку поле определенной напряженности. Напряженность такого поля называют коэрцитивной силой Нс.

При дальнейшем усилении отрицательного поля магнитная индукция тоже становится отрицательной и в точке A' при H = –Hs достигает значения индукции технического насыщения (B = –Bs).

После уменьшения отрицательного поля, а затем увеличения положительного поля кривая перемагничивания опишет петлю, называемую предельной петлей магнитного гистерезиса, которая является важной технической характеристикой магнитных материалов.

Таким образом, предельная петля магнитного гистерезиса – это кривая изменения магнитной индукции при изменении внешнего магнитного поля от +Hs до –Hs и обратно. Пользуясь предельной петлей магнитного гистерезиса можно определить основные параметры материала: коэрцитивную силу Нс, индукцию насыщения Bs, остаточную индукцию Br и др.

Такие характеристики материала, как точка Кюри и индукция насыщения, зависят только от химического состава магнитных материалов. Коэрцитивная сил Нс, магнитная проницаемость M и площадь петли гистерезиса являются структурночувствительными.

Чем больше размер зерна (меньше суммарная удельная поверхность зерен) и более совершенна структура кристаллической решетки (меньше дислокаций, внутренних напряжений, примесей и других дефектов), тем меньше Нс и больше M, а материал легче намагничивается и перемагничивается.

По величине коэрцитивной силы магнитные материалы подразделяются на магнитомягкие и магнитотвердые. Материалы, у которых Нс < 4 кА/м, относятся к магнитомягким, у которых Нс > 4 кА/м – к магнитответдым (ГОСТ 19693 – 74).

Для магнитомягких материалов характерно малое значение коэрцитивной силы. У промышленных образцов наименьшая Нс = 0,4 А/м. Поэтому они намагничиваются до индукции технического насыщения при невысоких напряженностях поля. У магнитомягких материалов высокая магнитная проницаемость, малые потери на перемагничивание и узкая петля гистерезиса при высоких значениях магнитной индукции.

Для магнитотвердых материалов характерна широкая петля гистерезиса с большой коэрцитивной силой. У промышленных образцов наибольшая Нс = 800 кА/м. Магнитотвердые материалы намагничиваются при высокой напряженности внешнего магнитного поля, но зато длительное время сохраняют сообщенную энергию.

  • ← Раздел 2.1
  • Раздел 2.3 →

Источник: https://uas.su/books/newmaterial/22/razdel22.php

ПОИСК

Рис. 4.1. Петля гистерезиса для магнитного материала. Гистерезиз и его магнитная петля: механизм возникновения петли гистерезиса

    Карбонильное железо характеризуется специфической кривой первоначального намагничивания, соответствующей формой петли гистерезиса и определенными значениями составляющих магнитных потерь. При этом электромагнитные свойства карбонильного железа в блоке, получаемом металлокерамическим способом из порошка, и в частицах порошка существенно различны. Это в первую очередь объясняется изменением структуры материала при его металлокерамической обработке, а также влиянием на электромагнитные свойства размера частиц. [c.166]

    Связь между напряженностью приложенного магнитного поля и магнитной индукцией в образце с упорядоченным магнетизмом, выражается обычно петлей гистерезиса. Петля гистерезиса рис. 4.1) характеризуется максимальной индукцией Вт, остаточной индукцией Вг и коэрцитивной силой Не. Остаточная индукция и коэрцитивная сила магнитного материала зависят от структуры, включений и внутренних напряжений в материале. Максимальная индукция насыщения не чувствительна к структуре и зависит только от химического состава и температуры. [c.94]

    При намагничивании магнитного материала переменным полем петля гистерезиса, характеризующая затраты энергии в течение одного цикла перемагничивания, расширяются (увеличивают свою площадь) как за счет потерь на гистерезис, так и потерь на вихревые токи и дополнительные потери.

Такую петлю называют динамической, а сумму составляющих потерь — полными потерями. Геометрическое место вершин динамических петель гистерезиса называют динамической кривой намагничивания, а отношение индукции к напряженности поля на этой кривой — динамической магнитной проницаемостью [c.

32]

    Сложный характер одновременного влияния (часто в противоположных направлениях) различных факторов на магнитные свойства материалов затрудняет их разграничение и определение влияния каждого.

В некоторых простых случаях имеется возможность определить влияние одного или нескольких основных факторов на размеры и форму петли гистерезиса.

В случае, если этот фактор одновременно и однозначно влияет на другие физические (немагнитные) свойства материала, можно установить [c.165]

    Перспективными для использования в многоэлементных преобразователях являются преобразователи магнитных полей на основе кольцевых сердечников из материала с прямоугольной петлей гистерезиса. Достоинством таких преобразователей является наличие у них вентильных свойств, что делает ненужным применение электронных коммутирующих ключей в каждой ячейке матрицы. При этом отсутствует гальваническая связь между отдельными чувствительными элементами, сушественно упрощается конструкция много- [c.144]

    СИТ название петли гистерезиса (отставания),Изменение индукции при перемагничивании материала идет термодинамически необратимо за один цикл перемагничивания затрачивается энергия, количество которой пропорционально площади петли гистерезиса. Кроме потерь на гистерезис при действии на материал переменного магнитного поля, в нем появляются вихревые токи, на создание которых потеря энергии тем больше, чем меньше удельное сопротивление материала. [c.349]

    Петли гистерезиса бывают самыми разнообразными по форме. Одним из факторов, влияющих на форму петли, является размер частиц образца, причем увеличение их размера приводит, как правило, к тому, что материал становится более мягким, т. е.

уменьшается поле, необходимое для его перемагничивания (рис. 4.22. и 4.23). Объясняется это тем, что основным процессом при намагничивании очень мелких однодоменных частиц является поворот магнитного момента частицы в сторону поля (рис. 4.

24, А), в то время как намагничивание крупных частиц осуществляется путем смещения доменных стенок, происходящего при меньших полях, чем поворот моментов (рис. 4.24, Б).

Частицы среднего размера обычно бывают разделены на области-домены с разным направлением намагниченности, что уменьшает энергию магнитного поля, создаваемого магнитным моментом частицы. [c.199]

    Магнитный вид неразрушающего контроля основан на анализе взаимодействия магнитного поля с контролируемым объектом. Его, как правило, применяют для контроля объектов из ферромагнитных материалов.

По характеру взаимодействия физического поля с объектом этот вид контроля не дифференцируют во всех случаях используют намагничивание объекта и измеряют параметры, используемые при контроле магнитными методами. Процесс намагничивания и перемагничивания ферромагнитного материала сопровождается гистерезисными явлениями (рис. 1.1).

Свойства, которые требуется контролировать (химический состав, структура, наличие несплошностей и др.), обычно связаны с параметрами процесса намагничивания и петлей гистерезиса. [c.9]

    Сложный характер одновременного влияния (часто в противоположных направлениях) различных факторов на магнитные свойства материалов, как правило, не позволяет их разграничить и определить влияние каждого.

Только в некоторых (простых) случаях имеется возможность определить влияние одного или нескольких (основных) факторов на размеры и форму петли гистерезиса.

В случае, если этот фактор одновременно и однозначно влияет на другие физические (немагнитные) свойства материала, можно установить связь между ними и использовать магнитные свойства для контроля физических или химических свойств (параметров). [c.361]

    МАГНИТОСТРУКТУРНЫЙ АНАЛИЗ — анализ свойств магнитных материалов, основанный на использовании зависимости их магн. характеристик от структуры. К важнейшим магн. характеристикам относятся магнитная восприимчивость, магнитная проницаемость, намагниченность насыщения, коэрцитивная сила. У диамагнитных материалов магн.

Читайте также:  Принцип работы и нюансы монтажа отопления "Зебра" (zebra)

восприимчивость X отрицательна, у парамагнитных материалов положительна, вследствие чего диамагнетик выталкивается из неоднородного магн. поля, а парамагнетик втягивается в него. По силе выталкивания или втягивания судят о знаке или абс. величине магн. восприимчивости.

А поскольку при фазовом превращении в твердом состоянии и при плавлении она изменяется скачкообразно, этим обстоятельством пользуются для определения фазового состояния материала. У ферромагнитных материалов магн. восприимчивость — неоднозначная функция магн. поля. Связь между намагниченностью ферромагнетика и напряженностью намагничивающего магн.

поля изображается кривой намагничивания и петлей гистерезиса. В процессе намагничивания магн. проницаемость ферромагнетика л = 1 4- [c.749]

    Петля магнитного гистерезиса — зависимость магнитной индукции (намагниченности) магнитного материала от напряженности внешнего магнитного поля. [c.410]

    Указанные особенности позволяют объяснить изменения магнитных характеристик в зависимости от режимов охлаждения.

Действительно, для феррита из материала 1,3 ВТ незначительное изменение статических параметров петли гистерезиса с изменением температуры начала разрежения соответствует сравнительно мало- Му изменению величины у в пределах однофазной шпинельной структуры.

Вместе с тем импульсная квадратность сердечников иУ 1й]/г), являющаяся более чувствительной характеристикой к изменению дефектности шпинели [189], значительно снижается по [c.144]

    Если образец магнитноупорядоченного материала намагнитить до насыщения, а затем снять намагничивающее поле, то образец будет находиться в так называемом остаточном состоянии, т. е. обладать остаточной индукцией.

Коэрцитивная сила является величиной, наиболее чувствительной к структуре магнитного вещества. Таким образом, по форме петли гистерезиса можно судить об особенностях свойств различных магнитных материалов.

Материалы для эластичных постоянных магнитов (магнитнотвердые резины) должны характеризо- [c.94]

    Не и уменьшением остаточной индукции и коэффициента прямоугольности Кп. Образец, отожженный при 300°С, сохраняет исходные магнитные характеристики, чему соответствует неизменное значение постоянной решетки и фазового состава материала.

Отжиг при 400°С и выше приводит к ухудшению статических параметров петли гистерезиса, а на рентгенограммах появляется значительное расширение линий и искажение их формы, свидетельствующее о неоднородности материала.

Последнее может стать результатом окисления, идущего в первую очередь по границам [c.148]

    Магнитный гистерезис — явление очень важное. По форме петли все магнитные материалы можно разделить на две большие группы мягкие магнитные материалы и жесткие, или высококоэрцитивные.

Мягкий магнитный материал должен иметь кривую намагничивания с большой проницаемостью (характеризующую кривизну подъема кривой, см. рис. 125), достигаемой в очень слабых полях, и очень узкую петлю гистеризиса с ничтожно малой коэрцитивной силой.

Важнейшее значение мягких магнитных материалов в экономике страны видно, например, из той роли, которую играют в ней трансформаторное и динамное листовое железо.

Жесткий магнитный материал для выполнения своего назначения стабильного источника сильного магнитного поля должен обладать максимально широкой петлей гистерезиса, т. е. максимальными коэрцитивной силой и остаточной индукцией. [c.322]

    Рассмотрим теперь петлю магнитного гистерезиса (см. ниже) как характеристику магнитного материала, и в первую очередь зависимость формы петли от размера зерен.

Нужно отметить трудоемкость получения петли гистерезиса с помощью сквид-магнитометра, поскольку для изменения намагничивающего поля в сквид-системе требуется отогреть и вновь охладить сверхпроводящий экран при новом значении поля. [c.198]

    Известно, что форма и размеры петли гистерезиса зависят от химического состава материала, определяющего кристаллографическую анизотропию, наличие и расположение примесей и атомов легирующих элементов, микро- и макронапряжения, наличие и расположение дислокаций и т. п.

Сложный характер взаимосвязи между указанными факторами затрудняет установить корреляционную связь каждого из них с магнитными свойствами материала. В некоторых случаях можно определить влияние одного или нескольких основных факторов на размеры и форму петли гистерезиса. [c.

72]

    В литературе можно найти многочисленные примеры исследования влияния давления на параметры индуктивных элементов. Индуктивность компонентов, содержащих железный порошок в пластиковой матрице, обычно пропорциональна давлению, однако эти изменения не носят постоянного характера.

Единственный описанный в литературе случай существенного остаточного изменения параметров в результате воздействия давления связан со специальным сердечником из материала с ориентированной зеренной структурой и с прямоугольной петлей гистерезиса.

Сведения о влиянии давления на элементы устройств магнитной памяти в литературе найти не удалось, но можно предположить, что такие компоненты будут выходить из строя при однократном повышении давления, поскольку в них используются материалы, аналогичные применяелйлм в ориентированных сердечниках с прямоугольной петлей гистерезиса. [c.482]

    Характер наблюдаемых изменений позволяет понять их причину. Прежде всего, необходимо обратить внимание на принципиально иной, по сравнению с феррожидкостями, характер зависимости намагниченности суспензий от напряженности поля — наличие гистерезиса.

Гистерезис — это несовпадение зависимостей свойства (намагниченности) от параметра состояния (напряженности поля), получаемых при увеличении и при уменьшении значения параметра состояния. Гисте-резис намагниченности наглядно представляется в виде петли гистерезиса (рис. 3.73).

Намагничивание суспензии однодоменных частиц магнитно-жесткого материала при напряженности магнитного поля меньшей, чем коэрцитивная сила частиц, возможно только путем механического поворота частиц в магнитном поле достаточно большой напряженности Я.

Она должна быть такой, чтобы крутящий момент [тН], действующий на частицу со стороны магнитного поля, превысил момент [c.665]

    В режиме А нарушения сплошности определяют при высоких намагниченностях, когда магнитное состояние материала изделия соответствует индукциям, близким к предельной петле гистерезиса.

Конструкционные стали относятся, как правило, к группе ферромагнитных материалов с нормальными петлями гистерезиса, у которых отношение остаточной индукции Вг к максимальной 5тах на предельной петле гистерезиса приблизительно постоянно и равно 0,5. .. 0,7.

Для режима А оказалось возможным за критерий выбора расчетной формулы взять значение остаточной индукции. [c.348]

    ИНДУКЦИЯ НАСЫЩЕНИЯ (лат. 1пс1ис11о — наведение, возбуждение) — магн. индукция при такой напряженности магн. поля, когда намагниченность материала становится максимальной. Для большинства материалов абс. магн.

насыщение неосуществимо, для остальных — возможно в очень сильных нолях, когда намагниченность насыщения /о не зависит от поля. Магнитные материа.гы, гл. обр. магнитпо-мяг-кие, характеризуются индукцией технического насыщения — магн.

индукцией, при к-рой намагниченность материала достигает значения технического насыщении — состояния, когда векторы намагниченности всех доменов ориентируются в направлении намагничивающего поля с напряженностью Н . С увеличением наиряженности поля петли гистерезиса остаются одинаковыми. И. н.

зависит только от природы ферромагнитных фаз магн. материала и не зависит от технологии мех. обработки. В размагниченном состоянии при т-рах, не превышающих Кюри точку, каждый домен ферромагнетика благодаря действию внутрикристалличе- [c.501]

    К сожалению, нельзя использовать ток, проходящий через катушки электромагнита для определения массовых чисел, вследствие эффекта гистерезиса. Чтобы измерять массы в области до 200 массовых единиц с точностью до 0,2 а. е. м.

(10 %), требуется измерение магнитного поля с точностью до 5-10 и специальное приспособление — измеритель масс, который в процессе развертки масс-спектра непрерывно регистрирует развертываемые массы, значения которых оператор наносит на спектр.

В ином случае измеритель должен делать отмэтки на регистрируемом спектре, соответствующие заранее определенной величине отношения массы к заряду регистрируемых ионов.

Для очень точных определений масс предпочтительнее использовать измерение электростатического потенциала, так как необходимо оценивать эффективное магнитное поле на всем пути движения иона, что сложно.

Измерения магнитного поля на небольшом участке недостаточны для оценки этого эффективного поля вследствие неоднородности магнитного материала, обусловливающего разницу в полях на различных участках поверхности магнита.

Положительные ионы в масс-спектрометре проходят через области поля рассеяния, поэтому лучшая характеристика магнитного поля может быть, вероятно, получена в том случае, если измерительное устройство помещено не в области однородного поля около центра полюса, а на участках, подверженных также действию рассеянных полей. Различия отдельных участков поля между полюсами могут изменяться в зависимости от гистерезисиой петли. Эта разница сравнительно невелика и не мешает применению измерителей магнитного поля для определения масс с точностью до 0,1%. [c.57]

    В заключение отметим, что собственное атомное разупорядочение существенным образом влияет на магнитные свойства ферритов и это обстоятельство надо учитывать, когда надо получить материал со строго повторяющимися параметрами.

В качестве технологического приема, стабилизирующего магнитную индукцию и квадратность термостабильной петли гистерезиса, иногда рекомендуют дополнительные к основной термообработке отжиги при температурах 700—800°С в течение времени, достаточном для равновесного перераспределения ионов по подрешеткам (продолжительность отжига зависит от природы феррита [2]).

Примером значительного влияния собственно атомного разупорядочения на магнитные свойства является поведение феррита никеля, резко закаленного с высоких температур и обладающего определенной концентрацией ионов N1 + в Л-узлах решетки (при 1300°С в формуле Ре » [Ы1 Ре2111л ]04 д = 0,9955).

Как показали измерения [142], появление N1 + в тетраэдрических узлах шпинельной структуры приводит к изменению анизотропии кристалла и ширины линии ферромагнитного резонанса. [c.116]

    Так, например, однополупериодиый магнитный усилитель (рис. Х-1) представляет собой дроссель насыщения ДЯ с рабочей ОР и управляющей ОУ обмотками. Материал сплава, из которого выполнен сердечник дросселя, обладает петлей гистерезиса, форма которой близка к прямоугольной.

В цепь рабочей обмотки, получающей питание от сети переменного тока через трансформатор 1Т, включены выпрямитель ВР и сопротивление нагрузки СН, с которого и снимается импульс отпирающего напряжения. Обмотка управления включена через сопротивление управления СУ в сеть постоянного тока.

СС и Е — сеточные сопротивления и конденсатор СЗН, ЕЗН, ВЗН и ТЗН — сопротивление, емкость, выпрямитель и трансформатор запирающего напряжения. [c.226]

Источник: https://www.chem21.info/info/835559/

Магнитный гистерезис: описание явления, гистерезисная петля

В данной статье мы рассмотрим явление под названием магнитный гистерезис, которое связано со свойствами намагничивания материала, благодаря которому он сначала намагничивается, а затем размагничивается. Рассмотрим кривые намагничивания, сохраняемость, а так же магнитную петлю гистерезиса.

Читайте также:  Компрессор для септика: назначение, как выбрать, установка и ремонт

Описание явления магнитного гистерезиса

Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.

Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.

Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина.

 Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как:   B = M H .

Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:

Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока.

 Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o = 4.π.10 -7  ч / м ).

Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничиваниякривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.

Намагниченность или кривая B-H

Набор кривых намагничивания выше, представляет пример взаимосвязи между B и H для сердечников из мягкого железа и стали, но каждый тип материала сердечника будет иметь свой собственный набор кривых магнитного гистерезиса. Вы можете заметить, что плотность потока увеличивается пропорционально напряженности поля до тех пор, пока она не достигнет определенного значения, если оно больше не может становиться почти равным и постоянным, поскольку напряженность поля продолжает увеличиваться.

Это связано с тем, что существует ограничение на количество плотности потока, которое может генерироваться ядром, поскольку все домены в железе идеально выровнены.

 Любое дальнейшее увеличение не будет влиять на значение M , и точка на графике, где плотность потока достигает своего предела, называется магнитным насыщением, также известным как насыщение сердечника, и в нашем простом примере выше точки насыщения стальной кривой начинается примерно с 3000 ампер-витков на метр.

Насыщение происходит потому, что, как мы помним из предыдущей статьи по магнетизму, который включал теорию Вебера, случайное расположение структуры молекулы в материале ядра изменяется, когда крошечные молекулярные магниты в материале становятся «выстроенными».

По мере увеличения напряженности магнитного поля ( H ) эти молекулярные магниты становятся все более и более выровненными, пока они не достигнут идеального выравнивания, создавая максимальную плотность потока, и любое увеличение напряженности магнитного поля из-за увеличения электрического тока, протекающего через катушку, будет иметь мало или вообще не будет иметь эффекта.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке.

Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R  .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле.

Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной.

Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Магнитная петля гистерезиса

Магнитная петля гистерезиса выше, показывает поведение ферромагнитного сердечника графически в виде соотношения между B и H является нелинейным. Начиная с немагнитного сердечника, и B, и H будут в нуле, точка 0 на кривой намагничивания.

Если ток намагничивания I увеличивается в положительном направлении до некоторого значения, напряженность магнитного поля H линейно увеличивается с I,и плотность потока B также будет увеличиваться, как показано кривой из точки 0 в точку a, когда она движется к насыщению.

Теперь, если ток намагничивания в катушке уменьшается до нуля, магнитное поле, циркулирующее вокруг сердечника, также уменьшается до нуля. Однако магнитный поток катушек не достигнет нуля из-за остаточного магнетизма, присутствующего в сердечнике, и это показано на кривой от точки а к точке b .

Чтобы уменьшить плотность потока в точке b до нуля, необходимо обратить ток, протекающий через катушку. Сила намагничивания, которая должна применяться для обнуления остаточной плотности потока, называется «Коэрцитивной силой». Эта коэрцитивная сила меняет магнитное поле, перестраивая молекулярные магниты, пока ядро ​​не станет немагнитным в точке с .

Увеличение этого обратного тока вызывает намагничивание сердечника в противоположном направлении, и дальнейшее увеличение этого тока намагничивания приведет к тому, что сердечник достигнет своей точки насыщения, но в противоположном направлении, точки d на кривой.

Эта точка симметрична точке b . Если ток намагничивания снова уменьшится до нуля, остаточный намагниченность, присутствующая в сердечнике, будет равна предыдущему значению, но в точке е будет обратной .

Снова изменение направления тока намагничивания, протекающего через катушку на этот раз в положительном направлении, приведет к тому, что магнитный поток достигнет нуля, точка f на кривой, и, как и прежде, дальнейшее увеличение тока намагничивания в положительном направлении приведет к насыщению сердечника в точке а .

Затем кривая B-H следует по пути a-b-c-d-e-f-a, когда ток намагничивания, протекающий через катушку, чередуется между положительным и отрицательным значением, таким как цикл переменного напряжения. Этот путь называется магнитной петлей гистерезиса.

Эффект магнитного гистерезиса показывает, что процесс намагничивания ферромагнитного сердечника и, следовательно, плотность потока зависят от того, на какую часть кривой намагничивается ферромагнитный сердечник, поскольку это зависит от прошлых цепей, придающих сердечнику форму «памяти». Тогда ферромагнитные материалы имеют память, потому что они остаются намагниченными после того, как внешнее магнитное поле было удалено.

Однако мягкие ферромагнитные материалы, такие как железная или кремниевая сталь, имеют очень узкие петли магнитного гистерезиса, что приводит к очень небольшим количествам остаточного магнетизма, что делает их идеальными для использования в реле, соленоидах и трансформаторах, поскольку они могут легко намагничиваться и размагничиваться.

Поскольку для преодоления этого остаточного магнетизма необходимо применять коэрцитивную силу, необходимо выполнить работу по замыканию петли гистерезиса, чтобы используемая энергия рассеивалась в виде тепла в магнитном материале. Это тепло известно как потеря гистерезиса, величина потери зависит от значения материала коэрцитивной силы.

Добавляя добавки к металлическому железу, такие как кремний, можно получить материалы с очень малой коэрцитивной силой, которые имеют очень узкую петлю гистерезиса. Материалы с узкими петлями гистерезиса легко намагничиваются и размагничиваются и известны как магнитомягкие материалы.

Магнитные петли гистерезиса для мягких и твердых материалов

Магнитный гистерезис приводит к рассеиванию потраченной энергии в виде тепла, причем энергия теряется пропорционально площади петли магнитного гистерезиса. Потери гистерезиса всегда будут проблемой в трансформаторах переменного тока, где ток постоянно меняет направление, и, таким образом, магнитные полюсы в сердечнике будут вызывать потери, потому что они постоянно меняют направление.

Вращающиеся катушки в машинах постоянного тока также будут нести гистерезисные потери, поскольку они попеременно проходят севернее южных магнитных полюсов.

Как указывалось ранее, форма петли гистерезиса зависит от природы используемого железа или стали, и в случае железа, которое подвергается массивным изменениям магнетизма, например, сердечники трансформатора, важно, чтобы петля гистерезиса B-H была как можно меньше.

В следующей статье об электромагнетизме мы рассмотрим закон электромагнитной индукции Фарадея и увидим, что, перемещая проводной проводник в стационарном магнитном поле, можно вызвать электрический ток в проводнике, образующий простой генератор.

Источник: https://meanders.ru/chto-takoe-magnitnyj-gisterezis-krivye-magnitnogo-namagnichivanija.shtml

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]