Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

  • Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.
  • Ось У – ток через светодиод.
  • Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В.

Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток.

Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно.

При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так).

Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде.

Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них.

Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме

  1. Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.
  2. Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе
  3. Рисунок 2.

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт.

При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться.

При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2.

Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла.

Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Рисунок 3.

О деталях

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Таблица1 – перечень компонентов.

Позиционное обозначение Наименование Аналог/замена
R1 Резистор 10к. SMD типоразмер 0805
R2-R6 Резисторы шунта. SMD типоразмер 1206
VD1 Стабилитрон 9,1В. Корпус SOD80
VT1 Транзистор биполярный BC846. Структура – n-p-n. Корпус SOT23.
VT2 Транзистор полевой P0903BDG. Структура — n-канальный. Корпус DPAK

Резюмирую. Во всех моих разработках со светодиодами обязательно есть стабилизатор тока. Он или простой, как в тот, что описан в статье или на операционном усилителе. Светодиоды обычно подключаю параллельно или последовательно-параллельно, всё зависит от конкретной задачи. В этой же статье рассказал, как сделать несложный стабилизатор тока для светодиодов на полевом транзисторе. Постарался объяснить, чем отличается стабилизатор напряжения от стабилизатора тока для светодиодов и что лучше. Надеюсь у меня получилось. Привёл принципиальную схему стабилизатора тока и печатную плату. Все файлы можно скачать с сайта. Приятных разработок!

Ну и фото напоследок.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

  • BC846 datasheet.
  • P0903BDG datasheet.
  • Архив с проектом.

Источник: https://pichobby.lg.ua/shemu/bez-mk/item/111-stabilizator-toka-on-mosfet.html

Мощный стабилизатор напряжения своими руками | Все своими руками

     Здравствуйте уважаемые читатели. Давно хотел опробовать схему мощного, регулируемого стабилизатора напряжения, схема которого представлена в книге «Микросхемы для линейных источников питания и их применение» издательство Додэка 1998г. Схема изображена на рисунке 1.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

     На рисунке2 изображена схема, которую собрал я. В ней отсутствуют диод, резистор 2 и конденсатор 2. Резистор R2 необходим для замыкания токов утечки мощных транзисторов. Об установке дополнительных элементов можно подробно ознакомиться в вышеупомянутой книге. Вот небольшая выдержка из данной книги.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Данные испытуемого стабилизатора

Напряжение на входе………………………. 22В
Напряжение на выходе……………………. 14,15В
Ток ……………………………………………………… 0… 5А

Провал напряжения на выходе………. 0,05В

Напряжение пульсаций не мерил, так как запитывал стабилизатор от БП постоянного тока.
И так на вход подал 22В, резистором R5 установил напряжение на выходе 14В – точнее было 14,15. При увеличении тока нагрузки до 5А напряжение на выходе уменьшилось до 14,1В, что соответствует провалу напряжения в 50млВ, что довольно не плохо.

     При падении напряжения на самом стабилизаторе 10В и токе через мощные транзисторы 5А т.е. мощности, выделяемой на них в виде тепла в 50Вт, радиатор данных размеров нагревается до температуры 80 (на фото 1 правда 75 – потом температура поднялась) градусов.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

     Для кремния это, «как с добрым утром».

Но после прогонки стабилизатора при этой температуре в течении примерно часа, скоропостижно умер один из КТ829А (пробой к-э, но при снижении температуры все свойства транзистора восстанавливались, для меня это совсем не единичный случай в моей практике, именно поэтому я всегда испытываю свои поделки при повышенной и пониженной температуре, если предполагается, что они будут работать с возможным изменением климатики), пришлось заменить. Транзисторы у меня все бу, выпаяны из старых телевизоров. Резисторы, стоящие в эмиттерах мощных транзисторов, больше нужны для контроля коллекторных токов данных транзисторов, чем для их выравнивания. У меня разброс этих токов от транзистора к транзистору изменялся в разы, что потребовало подбора транзисторов. Например ток одного транзистора был 1,64А, а другого – 0,63А. Так, что эти яко бы уравнивающие резисторы в эмиттерных цепях можно после подборки транзисторов спокойно убрать. Стабилизатор собран навесным способом прямо на радиаторе (см. фото 2). При монтаже стабилизатора надо соблюдать некоторые условия.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

4. С1 и С2 лучше танталовые.

     После сборки стабилизатора обязательно проверьте осциллографом выходное напряжение стабилизатора – возможно самовозбуждение оного. Если возникнет возбуд, то возможен сильный разогрев С1 и С2 вплоть до взрыва. При первом включении всегда быстренько пальчиками пощупайте электролиты на предмет повышения их температуры.

Читайте также:  Контроллер для умного дома: выбор, конфигурации, состав

Стабилизатор нормально работает при входном напряжении 34В, при этом выходное напряжение должно быть не более 24В (зависит от номинала резистора R5 и высчитывается с помощью формулы).
Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе
Ток может достигать 10А при условии использования двух вентиляторов для принудительного обдува. В общем я уже подумываю на базе этого стабилизатора сделать себе лабораторный БП, дополнив его системами защиты и индикации, ну и естественно вольтметром и амперметром. Успехов всем. До свидания К.В.Ю.

Источник: https://www.kondratev-v.ru/stabilizatory/moshhnyj-stabilizator-napryazheniya.html

Регулируемый стабилизатор на высокое напряжение

   Современные блоки питания позволяют в некоторых пределах — до 20-30 вольт, менять напряжение выхода, для достижения желаемого напряжения от первичного источника. Больше не получится, даже самые современные линейные стабилизаторы на микросхемах-инверторах поднимают предельную планку вольт до 70 — не более. Но иногда нужно больше, гораздо больше.

Не на киловольты — хотя и для этого есть подходящие схемы, а несколько сотен вольт. Для этого можно использовать вот такую схему. Два стандартных сетевых трансформатора T1 и T2 (220V — 6V, 10W), используются, чтобы изолировать гальванически питающую сеть. Переменка удваивается и выпрямляется с помощью D1, D2, C1, C2, чтобы получить 560 В.

Потенциометр R3 задает VR, и позволяет регулировать Vout.

Принципиальная схема блока питания 0-500 В

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

   Своеобразный оптрон изолирует высокое напряжение на Q1 от выхода ОУ. С 10 резисторов (по 1 МОм каждый), соединенных последовательно, формируется опорное напряжение 5 В. Выходное напряжение может быть установлено от 0 до более чем 500 В.

   Для уменьшения мощности рассеяния и расширения диапазона выходного напряжения, управление транзистора Q1 проводится в необычной форме, с использованием оптической развязки. Два фотодиода, FD1 и FD2, работающих в фотогальваническом режиме, обеспечивают ток базы транзистора Q1. Свет, падающий на фотодиоды, вызывает протекание тока в базу Q1.

Максимальное напряжение от одного фотодиода не достаточно для управления, следовательно, нужно наличие двух фотодиодов соединенных последовательно. Тут используются фотодиоды инфракрасного света на 870 до 950 нм, и два ИК-светодиода, LD1 и LD2, чтоб осветить их. Светодиоды стандартные на 5 мм.

Чтобы улучшить коэффициент передачи тока через светодиоды, необходимо срезать верхушки и полировать их, чтобы сформировать плоскую поверхность. 

   Коэффициент передачи этого самодельного оптрона составляет около 0.05. Ток 20 мА через светодиод вызывает ток 1 мА через фотодиод. Кроме того, можно использовать готовые доступные оптроны, например, IL300, в котором тоже размещены два фотодиода.

   Конденсатор C6 добавляется для компенсации, транзистор Q1 должен быть оснащен нормальным радиатором.

Питание операционного усилителя и опорного напряжения осуществляется от переменного напряжения что между двумя трансформаторами, с помощью мостового выпрямителя BR1 (50 В, 1 А); двумя фильтрующими конденсаторами С7 и С8; и регулятор напряжения LM7805. Быстрое отключение выходного напряжения может быть выполнено простым  замыканием конденсатора С5, делая VR равным 0.

Внимание: высокое напряжение 500 В и ток несколько миллиампер может привести к летальному исходу; проявляйте осторожность при сборке, тестировании, и работе со стабилизатором.

   Форум по блокам питания

   Схемы блоков питания

ПРОСТОЙ ФОНО-ПРЕДУСИЛИТЕЛЬМощные стабилизаторы напряжения: высоковольтный на полевом транзисторе
СХЕМА ЧАСОВ НА ВЛИМощные стабилизаторы напряжения: высоковольтный на полевом транзисторе
РУКА-МАНИПУЛЯТОР ДЛЯ РОБОТАМощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Источник: https://elwo.ru/publ/skhemy_blokov_pitanija/reguliruemyj_stabilizator_na_vysokoe_naprjazhenie/7-1-0-764

Высоковольтный стабилизатор с малым уровнем пульсаций

Евгений Карпов

В статье описан относительно простой высоковольтный стабилизатор, обладающий малым уровнем шумов и пульсаций выходного напряжения. В стабилизатор встроены функции плавного нарастания выходного напряжения и защиты от перегрузок.

Стабилизатор предназначен для питания чувствительных схем предварительных усилителей и фонокорректоров, выполненных на электронных лампах.

Основные соображения

Основным назначением описанного ниже стабилизатора является питание высокочувствительных входных цепей ламповых усилителей.

Это определило основное требование к стабилизатору – низкий уровень шума и пульсаций на выходе [1].

Конечно, было желательно получить и малое выходное сопротивление, но этот параметр не является определяющим из-за незначительного и мало меняющегося тока, потребляемого этим блоком усилителя.

За базовый вариант была принята классическая схема компенсационного стабилизатора с однокаскадным усилителем ошибки (Рис.1) [2].

Для получения малых пульсаций на выходе стабилизатора необходимо иметь значительную величину петлевого усиления, которое существенно зависит от коэффициента усиления усилителя ошибки.

Для получения максимального коэффициента усиления в качестве коллекторной нагрузки транзистора VT1 применен источник тока I, и регулирующий элемент (VT2) выполнен на полевом транзисторе (можно считать, что каскад на транзисторе VT1 в области низких частот не нагружен).

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Такая схемотехника позволяет получить в области низких частот усиление каскада порядка 55 — 63db (если b используемых транзисторов находится в пределах 40 — 100).

Читатель может задать закономерный вопрос: а почему не использовать стандартный операционный усилитель? Основным преимуществом такого решения является более простая схема при сравнимой величине усиления. Так же стабилизатор получается менее склонным к паразитной генерации.

Высокое выходное напряжение стабилизатора и относительно низкое опорное напряжение VR позволяет практически бесплатно и существенно (в 2 — 3 раза) повысить стабильность выходного напряжения за счет подключения резистора, задающего начальный ток стабилитрона (R1), к цепи выходного стабильного напряжения.

Если вы посмотрите на схему, то увидите, что через стабилитрон текут три тока – стабильный ток I, заданный источником тока, стабильный ток IR1, заданный резистором R1 и нестабильный ток базы транзистора IB.

Если учесть, что ток базы транзистора на несколько порядков меньше суммы стабильных токов I и IR1, то становится ясно, что влияние динамического сопротивления стабилитрона RD (Рис. 2) на выходное напряжение практически исключается.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

 Особое внимание было уделено вопросу минимизации уровня шумов на выходе стабилизатора. В схеме можно выделить два основных источника шума – это транзистор VT1 и стабилитрон VD.

Шумом источника тока и резисторов делителя R2 и R3 можно в первом приближении пренебречь.

Это связано с тем, что суммарное сопротивление резисторов делителя достаточно мало (сотни ом – единицы килоомм), а шум источника тока не усиливается.

Возможность минимизации уровня шумов выбором типа и режима работы транзистора VT1 весьма ограничена.

Во-первых, транзистор VT1 должен быть высоковольтным, это существенно ограничивает номенклатуру пригодных типов.

Во-вторых, снижение уровня шумов путем снижением величины коллекторного тока наталкивается на два ограничения: ухудшение частотных свойств каскада и снижение величины b транзистора.

Точный расчет параметров каскада весьма громоздок, и я не буду его приводить, а ограничусь несколькими практическими рекомендациями.

Для большинства высоковольтных транзисторов средней мощности, аналогичных MPSA42, 2N6517, ZTX658, ZTX458 удовлетворительное сочетание параметров достигается при токе коллектора 0.7 — 1.5mA.

(При установке транзистора в схему желательно проверить величину его b; хотя типовые значения лежат в пределах 50 — 100, могут попасться экземпляры с b = 17 — 20.)

Нежелательно использовать в качестве VT1 более мощные транзисторы (типа MJE13003), при малых токах коллектора они имеют очень малую величину b, для получения приемлемого усиления каскада придется значительно увеличивать ток коллектора. Конечно, частотные свойства стабилизатора улучшатся, но ценой этого будет значительное увеличение рассеиваемой мощности на элементах схемы и увеличение уровня шума на выходе.

Следующим объектом нашей заботы является стабилитрон VD, определяющий величину опорного напряжения VR. Как правило, выбор типа стабилитрона и его рабочих режимов производится исходя из необходимого напряжения и его стабильности. Его шумовые характеристики не учитываются и не приводятся в технических данных.

Чаще всего, это и не надо, но в некоторых случаях шумовые характеристики стабилитрона важны.

Например, если источник питания должен иметь низкий уровень шума на выходе, если стабилитрон используется в цепях сдвига уровня сигнала или для организации напряжения смещения во входных каскадах усилителей, и непосредственно включен в сигнальную цепь.

Простейшая эквивалентная схема стабилитрона, учитывающая его ЕДС шума EN, показана на рисунке 2. Если вы мысленно замените в схеме стабилизатора (Рис.1) стабилитрон VD на его эквивалентную схему, то становится очевидным, что шумовой генератор включен непосредственно во входную цепь усилительного каскада на транзисторе VT1 и, соответственно, его шум будет усилен.

Фактически, стабилитрон является почти идеальным источником белого шума в широкой полосе частот, простирающейся от постоянного тока до единиц мегагерц (это используется для создания генераторов шума)[3]. Уровень шумового напряжения, генерируемого стабилитроном, существенно зависит от его режима.

Наибольший уровень шума стабилитрон генерирует, когда он начинает входить в режим стабилизации, и его рабочая точка находится на колене вольт-амперной характеристики. Этот режим характеризуется очень малыми токами, текущими через стабилитрон (десятки – сотни микроампер).

Увеличение тока стабилитрона вызывает уменьшение уровня шумового напряжения, этот факт многократно описан в различных источниках, но численных данных о величине уровня шума мне обнаружить не удалось.

Поэтому я решил просто померить уровни шумов, генерируемых стабилитронами различных типов, и оценить влияние тока стабилизации. Измерения проводились по схеме, показанной на рисунке 3.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

 В качестве источника тока использовался довольно малошумящий полевой транзистор КП302Г. Уровень шума измерялся прибором ИСШ-НЧ в звуковой полосе частот (использовался внутренний фильтр).

Конечно, полученные результаты не соответствуют абсолютно точному значению уровня шума, генерируемого стабилитроном, так как источник тока добавляет собственные шумы, но как показали измерения, они весьма малы, и этой погрешностью можно пренебречь.

Источник: https://www.radionic.ru/node/2437

Высоковольтный стабилизатор постоянного напряжения

Высоковольтный стабилизатор постоянного напряжения при построении высококачественных высоковольтных стабилизаторов напряжения, например, для питания ламповых каскадов, приходиться применять специальные схемы включения регулировочных элементов, что усложняет схемотехнику таких стабилизаторов [1]. Между тем, существуют интегральные микросхемы, применяя которые можно создавать простые высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N. Эти микросхемы предназначены для контроля и регулировки напряжения постоянного тока. Как нетрудно догадаться, цифровое обозначение в маркировке микросхемы будет соответствовать рабочему напряжению микросхемы в вольтах.

Читайте также:  Выключатель дистанционный с пультом: выбор, подключение

Высоковольтный стабилизатор постоянного напряжения на рис.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. Источником напряжения для стабилизатора служит сеть переменного тока 220 В.

В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения.

Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В.

Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1.

Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной п-р-п транзистор микросхемы, коллектор которого выведен на вывод 2 DA1.

Это приводит к тому, что понижается напряжение затвор-исток VT1, что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения.

Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 – VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения.

Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток.

Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке.

Резистор R1 должен быть проволочным. Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности.

Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги. Если в вашей конструкции С1 будет, как и по схеме рис.

1, подключен к выходу мостового выпрямителя напряжения переменного тока 50 Гц, то его ёмкость следует выбирать исходя из 4 мкФ на каждый 1 Вт нагрузки. В общем случае, ёмкость конденсатора С2 должна быть равна ёмкости конденсатора С1. Выпрямительные диоды 1 N4007 можно заменить, например, на 1N4006, UF4006, RL105, КД234Д.

Вместо стабилитрона BZV55C-12 подойдёт BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдёт любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт (с теплоотводом).

В высоковольтный стабилизатор постоянного напряжения его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам к подключенной нагрузке [2, 3].

Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт.

Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности.

Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно.

Высоковольтный стабилизатор постоянного напряжения может быть смонтировано на печатной плате размерами 105×50 мм, эскиз которой показан на рис.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Ток потребления микросхемы SE115N по выв. 1 около 3 мА. Для увеличения выходного напряжения стабилизатора в цепь вывода 3 DA1 можно включить стабилитрон.

Например, если у вас имеется микросхема SE140N «на 140 В», а вам нужен стабилизатор на выходное напряжение 180 В, то нужно последовательно с выв.

3 включить стабилитрон 1N4755A или два последовательно включенных стабилитрона КС520В. Через стабилитрон будет протекать сумма токов через выв. 1 и 2 DA1.

Кроме высоковольтных интегральных микросхем SE***N существуют также и низковольтные SE005N, SE012N, SE024N, SE034N, SE040N, на которых также можно изготавливать компенсационные стабилизаторы напряжения.

Стабилизатор напряжения, изготовленный по тому же принципу, который показан на рис. 1, должен иметь входное напряжение постоянного тока (на обкладках С1), превышающее выходное не менее чем на 8 В. При изготовлении конструкции, собранной по рис.

1, учитывайте, что все её элементы находятся под напряжением сети.

Закладка Постоянная ссылка.

Источник: https://vse-v-seti.ru/vysokovoltnyj-stabilizator-postoyannogo-napryazheniya/

Высоковольтный регулируемый стабилизатор

 Плавающий режим работы регулируемых трехвыводных стабилизаторов, например, семейства LM117, делает их идеальными для работы на высоких напряжениях . Стабилизатор не имеет земляного вывода; вместо этого весь потребляемый ток (примерно 5 мА) протекает через выходной вывод.

Так как стабилизатор видит только разницу напряжений между входом и выходом, максимально допустимое напряжение 40 В для стандартной серии LM117 и 60 В для высоковольтной серии LM117HV может не достигаться для выходных напряжений в сотни вольт.

Однако микросхема может быть повреждена при коротком замыкании выхода, если не принять специальных мер для защиты от этой ситуации.

На рис. 1 показано, как это можно сделать. Стабилитрон D1 обеспечивает, что LM317H видит разницу между входом и выходом всего 5 В в диапазоне выходных напряжений от 1.2 В до 160 В. Поскольку высоковольтные транзисторы неизбежно имеют низкое β, применен транзистор Дарлингтона.

Стабилитрон имеет достаточно низкий импеданс, поэтому прямо на входе LM317 блокировочный конденсатор не требуется (очевидно, что конденсатор не должен использоваться, если схема должна уцелеть при коротком замыкании выхода!). R3 ограничивает ток короткого замыкания на уровне 50 мА.

RC-цепочка на выходе улучшает переходную характеристику, как и шунтирование вывода ADJUST, а R4 и D2 защищают вывод ADJUST во время короткого замыкания.Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

 Рис. 1. Базовая схема высоковольтного стабилизатора.

 Так как Q2 может рассеивать до 5 Вт в нормальном режиме и 10 Вт при коротком замыкании, он должен быть установлен на радиатор. Для больших выходных токов следует заменить проходной транзистор в корпусе TO-3 или TO-220 на TO-202 NSD134 и уменьшить R3. Естественно, если требуется выходной ток менее 25 мА, то R3 можно увеличить, чтобы уменьшить требуемый размер радиатора.

Усовершенствованный вариант стабилизатора показан на рис. 2. Здесь стабилитрон LM329B на 6.9 В соединен последовательно с внутренним опорным источником LM317. Это улучшает температурную стабильность, так как LM329B имеет гарантированный температурный коэффициент ±20 ppm/°C, а также улучшает качество стабилизации, так как LM317 может иметь большее петлевое усиление.

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Рис. 2. Прецизионная схема высоковольтного стабилизатора.

 Эта же технология может быть использована для больших напряжений или токов при использовании лучших высоковольтных транзисторов или при каскадировании или параллельном соединении (с соответствующими уравнивающими эмиттерными резисторами ) нескольких транзисторов. Выходной ток короткого замыкания, определяемый R3, должен лежать в области безопасной работы Q2, чтобы исключить возможность вторичного пробоя.

Источник: https://meandr.org/archives/19204

Варианты применения стабилизатора высоковольтного напряжения

LC-фильтры хороши для снижения фонового напряжения, но их выходной импеданс достаточно высок (составляет десятки Ом).

Это обстоятельство особенно важно для однотактных усилителей с несимметричным выходом, так как выходная лампа не может различать приведенную нагрузку со стороны громкоговорителя (через выходной) трансформатор и внутреннее сопротивление источника питания, включенное последовательно с ним (рис. 7.28).

Размах амплитуд напряжения выходной лампы распределяется по этим двум элементам, хотя можно учесть и резистивную составляющую сопротивления, действующую в выходном трансформаторе.

При снижении мощности выходное сопротивление возрастает.

Стабилизатор высоковольтного напряжения позволяет получить для усилителя с несимметричным выходом оптимальную отдачу высоковольтного питания, и в значительной степени решает эту проблему.

Рис. 7.28 Влияние отличного от нуля значения сопротивления источника питания усилителя мощности

Рис. 7.29 Схема стабилизатора напряжения на двух транзисторах

Поскольку, каждый канал усилителя требует напряжения 300 В при силе тока 130 мА, можно в качестве источника высоковольтного напряжения использовать, например, приведенный на рис. 6.46 без каких-то изменений.

Однако так как для подавления пульсаций не хотелось бы затрачивать слишком много дополнительных усилий, некоторая адаптация схемы простого двухтранзисторного стабилизатора, примененного в исходном варианте, может оказаться вполне уместной.

Подобная модернизация приведена на рис. 7.29.

Преимуществом стабилизатора, собранного на двух транзисторах, является малое падение напряжения и, следовательно, невысокая рассеиваемая мощность.

Можно принять, что падение напряжения на стабилизаторе равно, или превышает 10 В и рассмотреть, что произойдет в случае, когда напряжение сети питания снижается на 6% (если такое возможно).

Таким образом, номинальное высоковольтное напряжение, необходимое для подачи на вход стабилизатора, определяется:

Проверка паспортных данных лампы-кенотрона EZ81 показала, что для ее работы необходим силовой трансформатор, у которого высоковольтные обмотки с отводом от средней точки рассчитаны на напряжения 412-0-412 В.

Высоковольтные мощные биполярные транзисторы имеют достаточно низкое значение h-параметра hFE, низкую рабочую частоту и высокую стоимость, поэтому использование в стабилизаторе высоковольтного МОП полевого транзистора может оказаться предпочтительнее при его последовательном включении в схему.

В случае, когда шумы не являются определяющим фактором, имеет смысл выбрать опорное (эталонное) напряжение с максимально возможным значением, так как это снизит выделяемую мощность на рассогласующем (ответвляющем) транзисторе, а также позволит использовать более высокий коэффициент передачи цепи обратной связи для уменьшения выходного сопротивления. Выбор напряжения 220 В в качестве рабочего для стабилизатора напряжения представляется оптимальным, так как он должен еще обеспечить значение выходного напряжения 285 В. Хотя в продаже имеются полупроводниковые стабилизаторы на напряжение 220 В, предпочтительнее использовать три последовательно включенных стабилитрона, имеющих рабочие напряжения 72 В. Причина заключается в том, что полупроводниковые стабилизаторы на высокие напряжения характеризуются более высокими уровнями шумов, потому что они вынуждены использоваться в области очень малых токов, чтобы снизить мощность, выделяющуюся на приборе, (которая, как известно, равна произведению протекающего тока на падение напряжения). Использование трех последовательно включенных полупроводниковых стабилитронов определяет их ток величиной 4 мА, что позволяет уменьшить уровень шумов. Для дальнейшего снижения уровня шумов стабилитроны шунтируются конденсаторами с емкостью 22 мкФ и рабочими напряжениями 350 В.

Читайте также:  Что понимается под напряжением шага: радиус поражения и правила перемещения

Напряжение на затворе МОП полевого транзистора составит Vout + Vgs = 300 + 4 = 304 В (несмотря на большой разброс параметров приборов, величина 4 В представляет все-таки достаточно грубое приближение для значения управляющего напряжения затвора Vgs мощного МОП полевого транзистора).

Так как коллектор рассогласующего транзистора подключен к затвору МОП полевого транзистора, а на эмиттер подается опорное напряжение, равное 216 В (3 х 72 В), напряжение коллектор-эмиттер составит VCE = (304 —216) В = 88 В.

Так как необходимо, чтобы рассогласующий транзистор пропускал на стабилизатор ток величиной 4 мА, то ток коллектора составит Ic = 4 мА, а мощность, выделяемая на транзисторе, составит 352 нВт.

Этот результат представляется очень важным, так как он подтверждает, что выбор значений напряжения между коллектором и эмиттером VCE и коллекторного тока Ic позволяет использовать маломощный транзистор.

При работе коллекторное напряжение рассогласующего транзистора VCE = 88 В, однако, в момент включения конденсатор с емкостью 22 мкФ, шунтирующий стабилитрон, фиксирует величину эмитерного напряжения рассогласующего транзистора на значении О В, следовательно, транзистор должен выдерживать коллекторное напряжение VCE = 330 В. Так как требования для рассогласующего транзистора определены, можно остановить выбор на идеальном варианте — транзисторе типа MPSA44, рассчитанном на напряжение 400 В и мощность рассеяния 625 нВт.

Высоковольтные транзисторы характеризуются малым значением параметра hFE, и указанный транзистор не является исключением. При проверке в ожидаемом рабочем режиме hFE ≈ 100.

Так как Ic = 4 мА, то Ib = Ic / hFE= 40 мкА.

Даже в том случае, когда через цепь выборочного делителя напряжения пропускается ток 1 мА, результат работы делителя напряжения нельзя рассматривать в качестве точного, так как базовый ток 40 мА искажает результат.

Первоначально ток цепи выборочного делителя напряжения был установлен исходя из условия мощности, рассеиваемой на резисторе с меньшим сопротивлением.

Если будут выбраны компоненты схемы, имеющие мощность рассеяния 0,6 Вт, но при этом на них будет выделяться 0,2 Вт, они будут оставаться холодными.

Резистор подключен к базе транзистора MPSA44, напряжение на которой на 0,7 В превышает напряжение на эмиттере, следовательно, к резистору приложено напряжение 217 В.

Если воспользоваться соотношением Р = V2/R, то сопротивление резистора должно составить 2172/0,2 = 235 кОм. Поэтому можно использовать ближайшее номинальное значение стандартного ряда 240 кОм, на котором будет рассеиваться мощность 196 мВт. Ток же через резистор определяется делением напряжения 217 В на сопротивление резистора 240 кОм, то есть составит 904 мА.

Так как базовый ток рассогласующего транзистора составляет 40 мА, то через верхний резистор делителя проходит ток, равный (904 + 40) мА = 944 мА.

Падение напряжения на этом резисторе составит (300 — 217) В = 83 В, а его сопротивление будет равно частному отделения напряжения 83 В на ток 944 мА и составит 87,9 кОм.

Резистор, имеющий ближайшее стандартное значение 91 кОм, удовлетворит требованиям схемы.

В области верхнего резистора отсутствует точка для подключения конденсатора так как низкое значение затухания цепи делителя (2,8 дБ) означает, что она только в незначительной степени может содействовать снижению пульсаций, хотя требуемая величина емкости могла бы продемонстрировать ответную реакцию стабилизатора на низкочастотные переходные токи.

Наименее критичным элементом схемы, который необходимо рассчитать, является величина сопротивления коллекторной нагрузки рассогласующего транзистора.

Известно, что на вход стабилизатора подается напряжение 330 В, а напряжение на коллекторе составляет 304 В, следовательно, падение напряжения на резисторе составляет 26 В.

Так как через него проходит коллекторный ток Iс = 4 мА, то величина сопротивления составит частное отделения напряжения на ток, то есть 6,5 кОм. Следует в данном случае использовать резистор со стандартным значением сопротивления 6,2 кОм.

Приблизительно оценочные вычисления, выполненные на оборотной стороне старого конверта, показали, что выходное сопротивление этого стабилизатора составит 5 МОм и он будет ослаблять фон более, чем на 50 дБ. Таким образом, полученные результаты можно признать более, чем удовлетворительными и дающие лучший результат, чем использование еще одного дополнительного дросселя в сглаживающем фильтре.

 

Источник: https://tubeamplifier-narod.ru/pda-minil3.htm

Простой высоковольтный стабилизатор — pdf скачать бесплатно

Подробнее

Подробнее
Подробнее

Подробнее

Подробнее

Подробнее

Подробнее

Подробнее

Подробнее

Подробнее

МОЩНЫЙ ДРАЙВЕР Евгений Карпов Приведена схема лампового драйвера с большим выходным напряжением. Толчком к проектированию этой схемы стала необходимость возбуждения выходного мощного триода в однотактном

Подробнее

Универсальный интерфейс — ма Возможности Токовый выход — ма для двухпроводной системы Общая ошибка преобразования.% (после калибровки) Нелинейность.% Точная установка защиты по выходному току. Независимая

Подробнее

Дисциплина «Микроэлектроника. Часть 2.» ТЕМА 5: «Интегральные стабилизаторы напряжения.» Легостаев Николай Степанович, профессор кафедры «Промышленная электроника» Содержание 1. Особенности интегральных

Подробнее

СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ Введение В данной электронной книге приведены сведения об отечественных интегральных микросхемах компенсационных стабилизаторов постоянного напряжения

Подробнее

5.12. ИНТЕГРАЛЬНЫЕ УСИЛИТЕЛИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ Усилители низкой частоты. УНЧ в интегральном исполнении это, как правило, апериодические усилители, охваченные общей (по постоянному и переменному току)

Подробнее

84 Лекция 9 СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ План 1. Введение 2. Параметрические стабилизаторы 3. Компенсационные стабилизаторы 4. Интегральные стабилизаторы напряжения 5. Выводы 1. Введение Для работы электронных

Подробнее

ГИБРИДНЫЙ УСИЛИТЕЛЬ Евгений Карпов Эта статья носит сугубо практический характер и посвящена практической реализации гибридного усилителя. Основной интерес, конечно, представляет реализация выходного каскада

Подробнее

Тестовые задания по курсу САЭУ (2013-2014 уч. год.) 1. Чему численно равен фактор обратной связи по постоянному току в приведенной на рис 1 схеме усилительного каскада, крутизну S в выбранной рабочей точке

Подробнее

Лекция 7 Тема: Специальные усилители 1.1 Усилители мощности (выходные каскады) Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается внешняя нагрузка, и предназначены

Подробнее

Министерство образования и науки РФ КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (КНИТУ-КАИ) им. А. Н. ТУПОЛЕВА Кафедра радиоэлектронных и квантовых устройств (РЭКУ) МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

Универсальный интерфейс 4 — ма / — 5мА Возможности Токовый выход 4- ма для двухпроводной системы и -5 ма для четырехпроводной системы. Общая ошибка преобразования.5% (после калибровки) Нелинейность.% Точная

Подробнее

280 Лекция 27 СХЕМОТЕХНИКА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ План 1. Введение. 2. Операционные усилители на биполярных транзисторах. 3. Операционные усилители на МОП-транзисторах. 4. Выводы. 1. Введение Операционный

Подробнее

Ультралинейный режим пентода в предварительных каскадах усиления Евгений Карпов При проектировании ламповых усилителей достаточно часто возникает проблема получения заданного коэффициента передачи такта.

Подробнее

Разделительный фильтр Евгений Карпов, Александр Найденко Рассмотрена схема и конструкция разделительного фильтра для реализации системы двухполосного воспроизведения. Фильтр реализован как отдельное, автономное

Подробнее

Лекция 8 Тема 8 Специальные усилители Усилители постоянного тока Усилителями постоянного тока (УПТ) или усилителями медленно изменяющихся сигналов называются усилители, которые способны усиливать электрические

Подробнее

СТАБИЛИЗИРОВАННЫЙ ОДНОТАКТНЫЙ КАСКАД НА ВАКУУМНОМ ТРИОДЕ Часть 2 Евгений Карпов Приведенная ниже схема является практическим примером реализации мощного выходного ESE каскада. 50V Рисунок 1 Реализация

Подробнее

Лекция 8. Усилители мощности Обратные связи в усилительных каскадах. Каскодные схемы. План 1. Введение. 2. Усилители мощности 3. Обратные связи в усилительных каскадах 4. Каскодные схемы. 1. Введение.

Подробнее

95 Лекция 0 ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ План. Введение. Понижающие импульсные регуляторы 3. Повышающие импульсные регуляторы 4. Инвертирующий импульсный регулятор 5. Потери и КПД импульсных регуляторов

Подробнее

ПРИНЦЕССА Евгений Карпов Часть 1 Однотактный усилитель повышенной мощности. Неправильные пчелы — приносят неправильный мед. Винни- Пух В общем, этот усилитель с аудиофильской точки зрения совершенно неправильный.

Подробнее

ЖУСУПКЕЛДИЕВ Ш, ТУТКАБАЕВА Б. [email protected] ИЗУЧЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО КАСКАДА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ В КУРСЕ ЭЛЕКТРОНИКИ ДЛЯ СТУДЕНТОВ ХИМИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ Кыргызский национальный университет

Подробнее

Кристалл Гибрид Евгений Карпов В статье рассмотрен вариант реализации гибридного RIAA корректора, в котором предпринята попытка совместить достоинства твердотельных и ламповых устройств. Прежде, чем окунуться

Подробнее

Усилители постоянного тока. Операционные усилители (ОУ). Проблема дрейфов : в усилителях переменного тока разделение каскадов емкостями или трансформаторами, применение реактивных нагрузок (дроссели и

Подробнее

НТЦ СИТ НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР СХЕМОТЕХНИКИ И ИНТЕГРАЛЬНЫХ ТЕХНОЛОГИЙ. РОССИЯ, БРЯНСК ШИМ-КОНТРОЛЛЕРЫ С РЕГУЛИРОВАНИЕМ ПО ТОКУ К1033ЕУ15хх К1033ЕУ16хх РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ ОПИСАНИЕ РАБОТЫ Микросхема

Подробнее

ГЛАВА 7 Комбинированный импульсный стабилизатор напряжения со связью по входному напряжению. Функциональная и принципиальная схемы стабилизатора В главе 7 предложены функциональная схема комбинированного

Подробнее

1 Лекция 7. УСИЛИТЕЛЬНЫЕ КАСКАДЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ. СОГЛАСУЮЩИЕ СВОЙСТВА УСИЛИТЕЛЬНЫХ КАСКАДОВ НА БИ- ПОЛЯРНЫХ И ПОЛЕВЫХ ТРАНЗИСТОРАХ План 1. Введение. 2. Усилительные каскады на полевых транзисторах.

Подробнее

Глава 5. УСИЛИТЕЛИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ 5.1. ПРИНЦИП УСИЛЕНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ Назначение и классификация усилителей. Усилители переменного напряжения являются наиболее распространенным типом электронных

Подробнее

Источник: https://docplayer.ru/36614033-Prostoy-vysokovoltnyy-stabilizator.html

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]