Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Мощность в цепи переменного тока и коэффициент мощности (косинус φ) В профессиональном лексиконе электрика наиболее популярны слова: фаза, ток, напряжение и словосочетание «косинус-фи». Этот «косинус-фи» всегда головная боль заводского энергетика.

Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности.

Коэффициент мощности характеризует потребителя электрической энергии с точки зрения наличия в нагрузке реактивной составляющей, при которой переменный ток и напряжение не совпадают по фазе.

Коэффициент мощности показывает, насколько переменный ток в нагрузке сдвигается по фазе относительно напряжения на ней (отстает или опережает). Численно коэффициент мощности равен косинусу этого фазового сдвига.

В электроэнергетике для коэффициента мощности принято обозначение cos φ (где φ — угол сдвига по фазе между током и напряжением). При наличии в нагрузке реактивной составляющей наряду со значением коэффициента мощности часто указывают и характер нагрузки: активно-ёмкостная или активно-индуктивная. Тогда коэффициент мощности называют соответственно опережающим или отстающим.

Мощность в цепи переменного тока

Для начала следует подробно рассмотреть вопрос электрической мощности. В электрической цепи постоянного тока все просто и достаточно понятно. В такой цепи зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение: Формула коэффициента мощности: косинус фи для потребителей, единица измерения В цепи переменного тока формулы для расчета мощности и само понятие мощности несколько сложнее. В общем случае в электрической цепи синусоидального переменного тока изменение напряжения и тока во времени не совпадают. Или другими словами напряжение и ток не совпадают по фазе. Ток отстает по фазе от напряжения при индуктивной нагрузке, и опережает напряжение при емкостной нагрузке. Только в частном случае, когда нагрузка чисто активная, ток и напряжение совпадает по фазе. В сети переменного тока различают полную, активную и реактивную мощность. Отметим, что само понятие реактивной мощности актуально только для электротехнических устройств переменного тока. Оно никогда не применяется к потребителям постоянного тока в силу малости (мизерности) соответствующих эффектов, проявляющихся кратковременно только при переходных процессах (включении/выключении, регулирование, изменение нагрузки). Полная мощность в цепи переменного тока (для однофазной нагрузки) равна произведению действующего значения тока на действующее значение напряжения (измеряется в ВА , кВА – вольт-амперах, кило вольт-амперах) Формула коэффициента мощности: косинус фи для потребителей, единица измерения Полная мощность представляет практический интерес, как величина, определяющая фактические электрические нагрузки на обмотки, провода, кабели, аппаратуру распределительных щитов, силовые трансформаторы, линии электропередач. Собственно поэтому номинальная мощность генераторов и трансформаторов, нагрузки аппаратов распределительных щитов и пропускная способность линий электропередач указывается в вольт-амперах, а не в ваттах. Полная мощность состоит из двух составляющих – активной Р, и реактивной Q мощности. Активная мощность это та часть электрической энергии выработанной генератором, которая безвозвратно преобразуется в тепловую (лампы накаливания, электроплиты, электропечи сопротивления, потери в трансформаторах и линиях электропередачи) или в механическую (электрические двигатели) энергию. Активная мощность измеряется в Вт, кВт (ватт, киловатт). Активную мощность можно определить по следующей формуле (для однофазной нагрузки): Формула коэффициента мощности: косинус фи для потребителей, единица измерения Вот здесь и появляется знаменитый cos φ Формула коэффициента мощности: косинус фи для потребителей, единица измерения Если ток совпадает по фазе с приложенным напряжением то угол φ = 0, и соответственно cos φ =1. Для электрической сети это оптимальный вариант. В этом случае полная мощность равна активной мощности и вся электрическая энергия в нагрузке превращается в другие виды энергии. Например, в электрочайнике – в тепловую энергию. Чаще потребители электрической энергии имеют обмотки и магнитопроводы (электрические двигатели, трансформаторы, дроссели газорязрядных ламп, пускатели и реле) необходимые для их нормальной работы. В общем случае такая нагрузка называется индуктивной. При чисто индуктивной нагрузке ток отстает от напряжения на угол φ = 90О , при котором cos φ = 0 и активная мощность также P = 0. Для характеристики таких потребителей в электротехнике введено понятие реактивной мощности: Формула коэффициента мощности: косинус фи для потребителей, единица измерения Реактивная мощность измеряется в Вар, кВАр (вольт-амперах реактивных, кило вольт-амперах реактивных). Кстати, реактивную мощность можно измерить с помощью счетчика реактивной энергии, также как и активную счетчиком активной энергии. Названа мощность реактивной совсем не по аналогии с «ракетой»!!. Мы помним, что в физике термин «реактивный» обычно употребляется как связанный с возникновением движения под действием силы отдачи струи пара, газа и т. п., вытекающей с большой скоростью в противоположную силе отдачи сторону. В электротехнике это элемент электрической цепи, обладающий индуктивностью и/или электрической ёмкостью, и термин реактивный употребляется для характеристики элемента электрической цепи, обладающего этими свойствами. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Физически реактивная мощность, это мощность, которая накапливается в электрических и магнитных полях. При наличии в сети индуктивности и, например, статического конденсатора электромагнитная энергия в один полупериод изменения тока накапливается в электромагнитном поле катушки индуктивности, в следующий полупериод возвращается конденсатору, где накапливается в его электрическом поле, а затем возвращается обратно к индуктивности. Следует понимать, что реактивная мощность не расходуется на выполнение работы электротехнического устройства (нагрев, выполнение механической работы) но она необходима для его нормальной работы. Так в трансформаторе электрическая энергия передается с первичной обмотки во вторичную цепь посредством электромагнитного поля, для создания которого и необходима реактивная мощность. Преобразование электрической энергии в асинхронном электродвигателе осуществляется с помощь того же электромагнитного поля, и снова для его создания также требуется источник реактивной мощности. На генерацию активной мощности расходуются первичные энергоресурсы – газ, мазут, уголь, энергия ветра или падающей воды. Поскольку каждые полпериода переменного тока накопленная в магнитном поле реактивная энергия отдается обратно в источник (синхронный генератор, конденсатор) то в идеале на генерацию реактивной мощности не требуется расход первичного энергоносителя. Однако при более глубоком рассмотрении оказывается, что реактивная энергия не такая уж безобидная. На генерацию реактивной мощности все- таки требуется расходовать некоторое количество первичного энергоносителя для покрытия механических и электрических потерь в генераторах, диэлектрических потерь в конденсаторах. Кроме того при передаче реактивной энергии в линиях и трансформаторах возникают потери на нагрев. Еще одна неприятность состоит в том, что генерация и передача реактивной энергии требует увеличения установленной мощности генераторов, увеличения сечения проводов и мощности трансформаторов, т. е. связана с большими экономическими затратами. В энергетической системе источниками реактивной мощности могут быть синхронные генераторы, синхронные компенсаторы, перевозбужденные синхронные двигатели и конденсаторы. Решение о способе компенсации реактивной мощности всегда необходимо принимать на основе технико–экономического анализа. Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Чисто условно принято говорить, что они потребляют положительную реактивную мощность. Реактивная мощность статических конденсаторов отрицательна и принято говорить, что они генерируют реактивную мощность. Синхронные генераторы в зависимости от величины тока возбуждения могут, как производить, так и потреблять реактивную мощность. Т.е. ведут себя относительно электрической сети как емкость или как индуктивность. То же можно сказать и о синхронных двигателях и синхронных компенсаторах. Впрочем, есть класс синхронных машин – реактивные машины, которые такой способностью не обладают. Численное значение коэффициента мощности электроустановок переменного тока может находится в диапазоне от 0,05-0,1 для трансформаторов в режиме холостого хода до 1,0 для нагревательных электроприборов и ламп накаливания. Коэффициент мощности асинхронных электродвигателей при номинальной нагрузке может быть 0,7 – 0,9 и зависит от номинальной мощности, конструктивного исполнения, а также числа полюсов. Маломощные и тихоходные (многополюсные) двигатели отличаются пониженным значением cos φ . С уменьшением загрузки двигателей и трансформаторов их cos φ также значительно уменьшается.

Измерение коэффициента мощности

Для прямого измерения cos φ и фазы применяются специальные электроизмерительные приборы — фазометры. Формула коэффициента мощности: косинус фи для потребителей, единица измерения При отсутствии таких приборов коэффициент мощности можно определить косвенным методом по показаниям трех приборов :амперметра, вольтметра и ваттметра. Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно. В симметричной трехфазной цепи cos φ = Pw / (√3 х Uл х Iл); где Pw – активная мощность трехфазной системы, Uл, Iл – соответственно линейные напряжение и ток. В симметричной трехфазной цепи значение коэффициента мощности можно определить также по показаниям двух ваттметров Pw1 и Pw2 по формуле

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Коэффициент мощности величина не постоянная, он зависит от характера и величины нагрузки. Для асинхронного двигателя изменение нагрузки от нуля до номинальной приводит к изменению cos φ от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке. Для практических целей расчета мощности компенсирующих устройств в электрических сетях используют средневзвешенный коэффициент мощности за некоторый интервал времени — сутки или месяц. Для этого за рассматриваемый период снимают показания счетчиков активной и реактивной энергии Wa и Wр и расчитывают средневзвешенный коэффициент мощности по формуле Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Компенсация реактивной мощности

Для уменьшения потерь, устранения перегрузок трансформаторов и линий электропередач прибегают к искусственному повышению коэффициента мощности электрических установок путем компенсации реактивной мощности непосредственно у потребителей с помощью батарей статических конденсаторов.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Энергетическая диаграмма, иллюстрирующая передачу электрической энергии между генератором Г и потребителем Д, потребляющим активную и реактивную энергию. а) — при отсутствии компенсатора, б) — при наличии его (батарея статических конденсаторов С) . Синим цветом показано поток активной энергии, красным – реактивной. Формула коэффициента мощности: косинус фи для потребителей, единица измерения Добавлять комментарии могут только зарегистрированные пользователи.[ Регистрация | Вход ]

Новости сайта ukrelektrik.com

Последние статьи ukrelektrik.com

Последние ответы на форуме ukrelektrik.com

Заземление, зануление rashpilek1975 Alexzhuk / 37 Электроотопление IusCoin Multiki / 68 Всё обо всём — общение 2alpilip Наде4ка / 29

Источник: http://ukrelektrik.com/publ/moshhnost_v_cepi_peremennogo_toka_i_koehfficient_moshhnosti_kosinus_f/1-1-0-1345

Что такое «коэффициент мощности»?

Что такое «коэффициент мощности»?

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Вадим Дубинский и Анатолий Савельев

Вадим Дубинский, РЕДАКТОР И ИНЖЕНЕР FLUKE CISАнатолий Савельев, соавтор и инженер продаж TDK03 сентября 2019 Статья разработана в соавторстве с TDK Corporation.

Счета за электроэнергию составляют заметную долю в текущих расходах любого предприятия или объекта коммерческой недвижимости. Добавьте к этому риски простоев и дорогостоящего ремонта, связанные с перегрузкой сети, и станет понятно, почему вопросы обеспечения качества электроэнергии требуют значительного внимания.

Одной из проблем качества электроэнергии, которые потребители электроэнергии наиболее часто называют главной для своего объекта, является реактивная мощность (коэффициент мощности). Повышение К М означает снижение величины реактивной мощности (и тока), что увеличивает эффективность за счет:

  • экономии на счетах за электроэнергию (многие промышленные предприятия оплачивают активную и реактивную мощности);
  • экономии на штрафах за низкий КМ;
  • снижения нагрузки на питающие трансформаторы, линии электропередачи и распределительные устройства, что позволяет снизить затраты на их приобретение (можно использовать меньший номинал);
  • выигрыша в активной мощности от использующегося источника;
  • увеличения срока службы машин и оборудования, сокращения простоев благодаря снижению нагрузки…

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Что такое «коэффициент мощности»? Сначала мы рассмотрим более простой случай. При присутствии в цепи только основной частоты (50 Гц), энергия выражается в виде активной, реактивной и полной мощности.

Действительная (P) или активная мощность измеряется в ваттах (Вт). Это та часть мощности, которая нужна для выполнения работы. P=UIcosϕ.

Читайте также:  Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Реактивная мощность (Q) выражается в вольт-амперах реактивной мощности (ВАр). Она является следствием фазового сдвига между колебаниями напряжения и тока, вызванного реактивными нагрузками (емкости и индуктивности).

Реактивная мощность передается между источником и нагрузкой, но не выполняет работу. Тем не менее, она нагружает электрическую систему (проводники и трансформаторы), и это приходится учитывать.

Угол сдвига фаз между током и напряжением, созданный реактивными элементами нагрузок принято обозначать символом ϕ.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Полная мощность — это потребление (кВА). Эта величина измеряет общую потребность покупателя в поставке тока и напряжения на объект, независимо от выполнения при этом фактической работы.

Коэффициент мощности (powerfactor) равен отношению активной мощности к полной мощности PF = P/S. В случае, когда в системе только синусоидальные ток и напряжение на одной частоте, PF = P/S = cosϕ — характеризует угол сдвига по фазе между током и напряжением.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Как это работает? При чисто резистивной нагрузке (например, лампы накаливания и электронагреватели), напряжение и ток меняют полярность на обратную одновременно. Произведение напряжения и тока имеет положительное значение, переносится только активная мощность P (кВт). Происходит чистый перенос энергии к нагрузке.

Если нагрузка чисто реактивная (например, обмотки электродвигателей, трансформаторов, электромагнитов), то напряжение и ток смещены по фазе, и их произведение может иметь положительное или отрицательное значение, указывая, что некоторая часть энергии передается на нагрузку, а часть протекает обратно. Суммарная передача энергии к нагрузке равна нулю, передается только реактивная энергия Q (ВАр).

Формула коэффициента мощности: косинус фи для потребителей, единица измерения В реальности, нагрузки являются комбинацией сопротивления, индуктивности и емкости, в результате чего в системе создаются как активная, так и реактивная мощность. Полная мощность — это векторная сумма активной и реактивной мощности.

Полная мощность нас интересует потому, что даже если ток, связанный с реактивной мощностью, не производит работу у потребителя, он нагревает провода, приводя к потерям энергии. Размеры проводников, трансформаторов и генераторов должны быть подобраны таким образом, чтобы они могли выдерживать полный ток, а не только ток, выполняющий полезную работу.

Поскольку реактивная мощность требует от системы емкости, но не производит никакой работы, предприятия стараются поддерживать значение чистого ВАр на низком уровне. Низкий коэффициент мощности ограничивает производительность системы, может приводить к перепадам напряжения и перегреву.

Чем больше реактивных нагрузок индуктивного характера подключено к сети, тем хуже происходит потребление и тем больше процентное отношение потерь, которые можно выявить и количественно оценить с помощью коэффициента мощности. А реактивные нагрузки емкостного характера (т.н.

генерация в сеть) может вызывать перенапряжение, и, в ряде регионов, где наблюдается избыток генерирующих мощностей, сопровождаться штрафными санкциями со стороны электроснабжающей компании.

Для измерения реальной мощности нам понадобится прибор учета, который сможет одновременно измерять напряжение, силу тока в течение одной секунды. Цифровой мультиметр для этого не годится. Решением является прибор для измерения качества электроэнергии.

В зависимости от выбранной модели вы сможете производить измерения в сетях с конфигурацией с одной фазой, расщеплением фазы, тремя фазами (3 или 4-проводные) и измерять или регистрировать вольты, амперы, ватты, вольт-амперы, ВА реактивной мощности, а также коэффициент мощности и гармоники за определенный промежуток времени.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Некоторые модели регистраторов также дают возможность вести учет измерений за период времени для создания отчетов с показаниями потребления энергии, которые используются поставщиком электроэнергии — кВт·ч, кВА-ч и кВА (реакт.)-ч.

Для трехфазных сетей можно присмотреться к моделям Fluke 1732 и 1734 — они выполняют все необходимые требования и быстро окупятся при использовании на предприятии. Другие трехфазные регистраторы и анализаторы Fluke также имеют этот функционал. На скриншоте справа — экран с анализатора Fluke 435.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Оптимизация электросети внутри предприятия часто требует коррекции коэффициента мощности. Если при обследовании выявлено низкое значение cosϕ, то с помощью линейной нагрузки возможно повысить коэффициент мощности.

Для коррекции нужно включить в цепь реактивный элемент, производящий обратное действие. Асинхронный двигатель — наиболее распространенный тип нагрузки — имеет индуктивный характер (потребляемый ток отстает от напряжения).

Источник бесперебойного питания (ИБП) и синхронный двигатель — наиболее распространенные типы емкостной нагрузки (потребляемый ток опережает напряжение).

Для снижения реактивной мощности (повышения КМ) можно:

  • установить управляемый блок конденсаторов (емкостной характер), который будет создавать в нужный момент опережающий ток и компенсировать отставание тока, создаваемое в двигателе;
  • недогруженный двигатель имеет низкий cosϕ => коэффициент мощности можно повысить, заменить такой электродвигатель на менее мощный;
  • часть асинхронных двигателей заменить на синхронные (эквивалентные по мощности оставшимся асинхронным двигателям). Синхронный двигатель генерирует реактивную мощность при перевозбуждении, а потребляет при недовозбуждении. Регулирование напряжения с помощью СД осуществляется плавно;
  • отключать асинхронные двигатели и трансформаторы, работающие на холостом ходу.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Поскольку потери пропорциональны квадрату тока, небольшое повышение cosϕ приводит к значительному снижению потерь.

Все это работает при постоянном или медленно меняющемся cosϕ, но на практике ситуация может быть сложнее. В случае резко переменной реактивной мощности (изменение быстрее секунды), для cosϕ отстающего и для опережающего, возможное решение — это устройство PQVar. Оно поможет максимально точно и плавно (бесступенчато) поддерживать итоговый уровень реактивной мощности близко к нулю в независимости от типа cosϕ (опережающий/отстающий). Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Коэффициент реактивной мощности, который мы рассматривали выше, учитывает только основную частоту, но не гармоники. Они будут обсуждаться в следующей статье.

Напишите в х ваше мнение по теме!

Читайте другие наши статьи!

Источник: https://blog.flukemedia.ru/v06-red

Что такое косинус фи в электрике

23 августа 2018. Категория: Освещение.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ).

Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора.

В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие.

Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие.

Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие.

При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает.

То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду.

Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток.

На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

Источник: https://artillum.ru/lighting/117-prostymi-slovami-o-koeffitsiente-moshchnosti-i-kosinuse-fi.html

Коэффициент мощности, формула и примеры

  • Средняя мощность переменного электрического тока , выражаемая через действующие значения силы тока (I) и напряжение (U) равна:
  •     Формула коэффициента мощности: косинус фи для потребителей, единица измерения
  • где — действующее (эффективное) значение силы тока, — амплитуда силы тока, — действующее (эффективное) значение напряжения, — амплитуда напряжения.

Коэффициент мощности используют для характеристики потребителя переменного тока как реактивную составляющую нагрузки. Величина этого коэффициента отражает сдвиг фазы () переменного тока, который течет через нагрузку, по отношению к приложенному к нагрузке напряжению. Из выражения (1) видно, что по величине коэффициент мощности равен косинусу от этого сдвига. Если сила тока отстает от напряжения, то сдвиг фаз считают большим нуля, если обгоняет, то

Читайте также:  Освещение энергосберегающее: виды ламп, световоды, приемущества

Практическое значение коэффициента мощности

На практике коэффициент мощности стараются сделать максимально большим. Так как при малом для выделения в цепи необходимой мощности надо пропускать ток большой силы, а это приводит к большим потерям в подводящих проводах (см. закон Джоуля — Ленца).

Коэффициент мощности учитывают при проектировании электрических сетей. Если коэффициент мощности является низким, это приводит к росту части потерь электрической энергии в общей сумме потерь. Для увеличения данного коэффициента применяют компенсирующие устройства.

Ошибки при расчетах коэффициента мощности ведут к повышенному потреблению электрической энергии и уменьшению коэффициента полезного действия оборудования.

Коэффициент мощности измеряют фазометром.

Способы расчета коэффициента мощности

Коэффициент мощности рассчитывают как отношение активной мощности (P) к полной мощности (S)

    Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Коэффициент мощности для трехфазного асинхронного двигателя вычисляют при помощи формулы:

    Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Коэффициент мощности можно определить, используя, например треугольник сопротивлений (рис.1а) или треугольник мощностей (рис.1b).

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Треугольники на рис. 1(a и b) подобны, так как из стороны пропорциональны.

Единицы измерения

Коэффициент мощности — безразмерная физическая величина.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/koefficienty/koefficient-moshhnosti/

Косинус фи (cos φ) — Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.

Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».
При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения

А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I.

Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Индуктивная нагрузка

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

P=U x I x cos φ

Q =U x I x sin φ

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.

Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.

Источник: https://www.elektroceh.ru/novosti/kosinus-fi-cos-fi-koefficient-moshhnosti.html

Косинус фи в электротехнике – это коэффициент мощности

На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности.

И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше.

Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Мощности в электродвигателе

  • Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:
  • N=√Nа²+Nр²
  • Или вот так:
  • N=IxU.

Теперь рассмотрим составляющие первой формулы.

Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Nа=IxUxcosφ.

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами.

К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее.

Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Nр=IxUx sinφ.

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую.

И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа.

И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Косинус фи

  1. Как уже было сказано выше, значение косинуса фи в электротехнике – это величина, характеризующая степень линейности нагрузки. Для нее тоже существует формула:
  2. cosφ = Nа / (√3*U*I).

  3. Что касается величины «cosφ», то ее увеличение преследует несколько целей.
  • Основная цель – экономия потребления электрического тока.
  • Соответственно экономия цветных металлов, которые используются в обмотках электромотора.
  • Максимальное использование полезной мощности агрегата.

Хотелось бы отметить вот какой момент – производственные электрические сети всегда находятся в недогруженном состоянии. Почему? Все дело в том, что не все электродвигатели постоянно работают под нагрузкой. Любой асинхронный двигатель на холостом ходе имеет косинус фи, равный приблизительно значению 0,2.

При нагрузке косинус фи увеличивается до 0,85. Почему так происходит? Все опять упирается в активную и реактивную мощности. Первая при холостом ходе мотора приблизительно составляет 30%, вторая 15%. Как только нагрузка на электрический двигатель увеличивается, тут же поднимается активная составляющая, а реактивная снижается практически до нуля.

Поэтому основное требование увеличения «cosφ» – это работа предприятия с полной нагрузкой.

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

В первом случае необходимо использовать мероприятия, с помощью которых регулируются технологические процессы. Таким методом добивается оптимальный режим расходования потребляемой электроэнергии. Ко вторым, к примеру, можно отнести замену асинхронных электродвигателей синхронными, в которых реактивная мощность практически равна нулю. Она присутствует, но только на стадии запуска мотора.

Источник: https://onlineelektrik.ru/elaboratoriya/eizmereniya/kosinus-fi-v-elektrotexnike-eto-koefficient-moshhnosti.html

Что такое «коэффициент мощности» («косинус фи»)?

 Коэффициент мощности — безразмерная физическая величина, характеризующая потребитель тока, с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, на сколько сдвинут по фазе ток, протекающий через потребитель электроэнергии, относительно приложенного к потребителю напряжения. Численно, коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что, если источник синусоидального сигнала (например розетка 220В, 50Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем сопротивлении источника, выделяется повышенная мощность.

На практике это означает, что при работе на нагрузку со сдинутыми напряжением и током, от электростанции требуется больше энергии, избыток выделяется в виде тепла на проводах и может быть довольно значительным.  Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы.

Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей.

В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).  Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.  В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой тока и напряжением) либо λ.

Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах. При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

 Коэффициент мощности необходимо учитывать при проектировании электросетей.

Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Формула коэффициента мощности: косинус фи для потребителей, единица измеренияТреугольник мощностей: Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность.

 Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений.

Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии.

Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
cos φ 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
λ 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

Нелинейные искажения тока

 Потребители электроэнергии с нелинейной вольт­амперной характеристикой (с коэффициентом мощности, меньшим единицы) создают ток, который меняется непропорционально мгновенному напряжению в сети (как правило, форма тока при этом отличается от синусоидальной).

Соответственно искажается форма напряжения на данном участке электросети, что приводит к ухудшению качества электроэнергии. В зависимости от характера нагрузки можно выделить следующие основные виды нелинейных искажений тока: это фазовый сдвиг, вызванный реактивной составляющей в нагрузке, и несинусоидальность формы тока.

Несинусоидальные искажения, в частности, имеют место, когда нагрузка несимметрична в разных полуволнах сетевого напряжения.

Формула коэффициента мощности: косинус фи для потребителей, единица измерения

 Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети.

Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности.  Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы и др.

Источник: http://mir-td.ru/blog/kosinus_fi/2012-04-03-110

Коэффициент мощности, что это такое?

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

  • Реактивная мощность может быть как положительной так и отрицательной.
  • Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.
  • Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии).

Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы.

В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

Источник: https://electrikam.com/koefficient-moshhnosti-chto-eto-takoe/

Что такое коэффициент мощности

Коэффициент мощности (cos φ) — безразмерная физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно — степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности.

Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи.

Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой тока и напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах. При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

Математические расчёты

Треугольник мощностей:

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к потерям электроэнергии в электрической сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства.

Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность.

Типовые оценки качества электропотребления

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
 cos φ 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
 λ 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, т. е. его повышения до значения, близкого к единице.

Например, большинство компактных люминесцентных («энергосберегающих») ламп, не имеющих коррекции коэффициента мощности, характеризуются низким его значением.

Нелинейные искажения тока

Потребители электроэнергии с нелинейной вольтамперной характеристикой (с коэффициентом мощности, меньшим единицы) создают ток, который меняется непропорционально мгновенному напряжению в сети (как правило, форма тока при этом отличается от синусоидальной).

Соответственно искажается форма напряжения на данном участке электросети, что приводит к ухудшению качества электроэнергии. В зависимости от характера нагрузки можно выделить следующие основные виды нелинейных искажений тока: это фазовый сдвиг, вызванный реактивной составляющей в нагрузке, и не синусоидальность формы тока.

Несинусоидальные искажения, в частности, имеют место, когда нагрузка несимметрична в разных полуволнах сетевого напряжения.

Несинусоидальность

Не синусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети.

Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности. Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например электродуговые сталеплавильные печи, установки электродуговой сварки, газоразрядные лампы и др.

Ссылки

  • Как повысить коэффициент мощности без использования компенсирующих устройств
  • Суднова В. В., Влияние качества электроэнергии на работу электроприемников
  • Не синусоидальность напряжения
  • Влияние высших гармоник напряжения и тока на работу электрооборудования
  • ГОСТ 13109-97
  • Оптимизация работы электроприемников — эффективный способ коррекции коэффициента мощности

Источник: http://www.remostroy.com/default.aspx?did=224

Коэффициент мощности

Спасибо за интерес, проявленный к нашей Компании

Коэффициент мощности

Отправить другу

Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.

cos φ = P/S, где:

  • cos φ – коэффициент мощности;
  • Р — активная мощность Вт;
  • S — полная мощность ВА;

Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.

Следует учитывать, что низкий коэффициент мощности потребителя приводит:

  • к необходимости увеличения полной мощности трансформаторов и электрических станций, а также к увеличению сечения питающих линий электропередач;
  • к понижению коэффициента полезного действия вырабатывающих и трансформирующих элементов цепи;
  • к увеличению потерь мощности и напряжения в проводах. При одних и тех же значениях мощности и напряжения уменьшение коэффициента мощности сопровождается увеличением тока в проводах, вследствие чего возрастают потери на нагрев, что, в свою очередь, приводит к падению напряжения в сети;

Чем меньше коэффициент мощности сети, тем менее загружена сеть активной мощностью и тем меньше коэффициент полезного действия использования сети. В связи с этим необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, а не реактивная, в этом случае коэффициент мощности будет ближе к единице.

Чтобы лучше понять данный вопрос, давайте рассмотрим причины низкого коэффициента мощности:

  • Недогрузка асинхронных электродвигателей. Потребляемая активная мощность уменьшается пропорционально нагрузке, а реактивная мощность изменяется меньше;
  • Неправильный выбор типа электродвигателя. Двигатели быстроходные и большой мощности имеют более высокий коэффициент мощности, чем тихоходные и маломощные;
  • Повышение напряжения в сети. Ведет к увеличению намагничивающего тока индуктивных потребителей реактивной составляющей полного тока;

Для увеличения коэффициента мощности можно:

  • изменить мощность и тип устанавливаемых электродвигателей;
  • увеличить загрузку электродвигателей в процессе работы;
  • уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность;
  • установить установку компенсации реактивной мощности с конденсаторами производства «Нюкон»;

Преимущества использования конденсаторных установок «Нюкон» для компенсации реактивной мощности

  • малые удельные потери активной мощности установками КРМ (собственные потери косинусных конденсаторов напряжением 0,4 кВ не превышают 0,5 Вт на 1000 ВАр);
  • отсутствие вращающихся частей;
  • удобный монтаж и надежные эксплуатационные характеристики;
  • возможность выбора любого необходимого шага компенсации реактивной мощности;
  • возможность установки и подключения в необходимой точке электросети;
  • отсутствие шума во время работы;
  • малые эксплуатационные затраты;
  • хорошая цена.

Если Вы желаете купить конденсаторную установку или узнать цену на установки компенсации реактивной мощности, позвоните по телефону указанному ниже или заполните приведенную форму. В этом случае, в ближайшее время мы с Вами свяжемся для уточнения особенностей Вашего проекта, необходимых для расчета стоимости КРМ

Возврат к списку

Источник: https://www.nucon.ru/dictionary/power-factor.php

Ссылка на основную публикацию
Adblock
detector