Гидравлический расчет системы отопления и расчет по площади

Даже самое новое и инновационное тепловое оборудование, установленное в доме, может оказаться бесполезным, поскольку не способно работать слаженно в едином отопительном комплексе.

Связывающим звеном многочисленных узлов и элементов тепловой системы является теплоноситель и его оптимальный гидравлический режим.

Если собственник жилого дома решил создать экономичную и работоспособную систему теплоснабжения, ему понадобится знать, как выполнить гидравлический расчет системы отопления.

Этапы проектирования отопительных систем

Гидравлический вместе с тепловым расчетом считаются одними из базовых в процессе создания работоспособной внутридомовой системы теплоснабжения.

Главная задача гидравлического расчета — обеспечить соответствие расчётных расходов с ее реальными рабочими показателями.

Объем теплоносителя, циркулирующего в сети должен сформировать устойчивый тепловой баланс, обеспечивающий необходимую санитарную температуру внутри здания.

Гидравлический расчет системы отопления состоит из системы вычислений, способных установить важные характеристики тепловой сети:

  • Минимально допустимые внутренние диаметры труб и объем теплоносителя, который способен пропустить выбранный сортамент и типоразмер трубопроводов;
  • все гидравлические потери на рассчитываемых участках;
  • условия гидромеханической наладки;
  • общие потери напора воды;
  • оптимизированный объем воды.

В соответствии с полученными расчетными данными, выполняют подбор электронасосов  и типоразмеры прямых и обратных труб.

Гидравлический расчет системы отопления: цели и задачи

Гидравлический расчет системы отопления и расчет по площади

Диаметр труб обязан обеспечить радиатор таким объемом греющей воды, которое требуется ему для функционирования с рабочей производительностью. Одновременно с этим принимается скорость циркуляции теплоносителя, она должна находится в промежутке от 0.2 до 0.5 л/с, а разница температур воды на входе/выходе из прибора отопления — 15-20 С.

Чем дальше размещена батарея от котла, тем большую дистанцию обязана пройти жидкость и, следовательно, тем более значимое гидросопротивление станет мешать ее продвижению. Для выполнения корректировки скорости течения воды необходимо использовать трубы разного диаметра.

Технология выполнения гидравлического расчета системы отопления

Перед тем как начинать выполнять гидравлический расчет системы отопления делают тепловой расчет объекта отопления с установлением теплового баланса и мощности основного оборудования: котла и приборов отопления.

Если этих данных нет, то пользуются приблизительным методом определения по размеру отапливаемой площади исходя из соотношения: 1 кВт на 10 м2.

Данная формула хорошо работает для объектов расположенных в центральных районах России, для северных и южных регионов вводятся соответствующие повышающие/понижающие коэффициенты.

Далее приступают непосредственно к выполнению гидравлического расчета.

Стандартная схема расчета:

  • Выполняют аксонометрическую схему;
  • наносят на чертеж около каждого прибора его тепловую мощность, кВт;
  • определяют объемные расходы греющей воды и внутренние Д труб;
  • рассчитывают общее сопротивления сети;
  • выполняют выбор электронасоса;
  • рассчитывают расширительный бак.

Гидравлический расчет однотрубной и двухтрубной системы

Для установления потерь потока в сети, ее разделяют на ответвления. Одно ответвление — это расстояние от источника нагрева до каждого прибора отопления. Они в свою очередь подразделяют на расчетные участки — части труб с равным объемным расходом сетевой воды.

Для любого такого участка устанавливают температуру теплоносителя, разницу температур, общий тепловой поток — сумму мощностей всех установленных батарей на данном отрезке сети.

В обязательном порядке учитывают местные сопротивления в виде запорной арматуры, фитингов, тройников и других элементов по схеме.

Для однотрубной/двухтрубных систем теплоснабжения с простой геометрией контура, не имеющей большого количества нагревательных приборов, расчеты можно провести ручным способом с применением калькулятора. Для более сложных развитых схем тепловой сети – с помощью программных методов.

  • Объемный расход греющей воды устанавливают по формуле:
  • Рт = Мт/(Ср х ΔТ)
  • Где:
  • Мт — общая мощность тепловой сети, определенная при теплотехническом расчете или по проекту, кВт;
  • Ср — физическая величина теплоемкости воды, кДж/(кг х C);
  • ΔТ – перепад температур на входе/выходе горячей воды из котлоагрегата, C.
  1. Скорость жидкой среды, циркулирующей по трубам:
  2. Ст= Рт /(ρ х Пс)
  3. Где:
  • Рт — расчетный расход воды на расчетном участке, кг/с;
  • ρ – плотность жидкой среды, кг/ м3;
  • Пс — площадь сечения трубопровода, м2
  • Гидравлические потери в трубопроводе определяются:
  • ΔPpтр = R х Дт
  • Где:
  • R – справочные данные удельных потерь в трубах на трение, Па/м;
  • Дт — длина трубопровода, м.

ΔPм.с = Σξ х (V²/2) х ρ

Где:

  • Σξ – сумма потерь;
  • V – скорость воды м/сек.

Системы с естественной циркуляцией

При выполнении гидравлического расчета пользуются исключительно внутренними Д труб и соответствующим им условному проходу — Ду. Для таких систем   применяют следующие рекомендации:

  • Протяженность горизонтальных линий труб не могут быть больше 20 м.
  • Магистральный трубопровод от источника нагрева принимают не менее Ду 50 мл.
  • Аналогичный диаметр трубопроводов принимают на отдельные 35 секций алюминиевых радиаторов.
  • Для ответвлений с количеством радиаторов от 25-35 шт., Ду = 40 мм.
  • А также для ответвлений с количеством радиаторов 10-25 шт., Ду = 25 мм.
  • И для ответвлений с количеством радиаторов до 10шт., Ду = 20 мм.

На любые 10 м ровного участка без размещенных батарей к Ду нужно прибавить еще 1/2 дюйма для уменьшения скорости циркуляции воды и потерь напора по длине.

Системы с принудительной циркуляцией

В схемах с принудительным движением среды, обеспечиваемого электронасосом Д труб непосредственно связан со скоростью циркуляции воды, состоянием внутренней шероховатости труб или материала из которого они изготовлены. Полимерные трубы или выполненные из меди, обладают наименьшим показателем и чем стальные.

С целью профилактики увеличения шума от работающей отопительной системы, скорости циркуляции воды ограничивают, соответственно для Ду от 10 до 20 мм, соответственно от 1.5 м/с до 1.0 м/с.

Расчет по отапливаемой площади

Наиболее точный гидравлический расчет системы отопления основывается на размерах нагреваемой  площади объекта. Кроме того при этом учитывают площадь оконных и внешних дверных проемов, степень утепления здания и кровли, а также климатические район размещения здания.

  1. С помощью такого расчета не только правильно подбирают Ду и протяженность трубопроводов, но устанавливают балансировку системы с применением радиаторных клапанов.
  2. Имея суммарную мощность всех батарей, определяют по вышеперечисленной формуле:
  3. Рт = Мт/(Ср х ΔТ)

Гидравлический расчет системы отопления и расчет по площади
Гидравлический расчет системы отопления и расчет по площади

В ней указана суммарная мощность радиаторов, которые трубопровод может обеспечить теплом.

Гидравлический расчет системы отопления и расчет по площади

Расчет расширительного бака

Гидравлический расчет системы отопления и расчет по площади

  • Объем емкости бака вычисляют по формуле
  • Орб = (О сис x Е) / Д,
  • Где:
  • О сис — общий внутренний объём сети;
  • Е – коэффициент расширения водной среды;
  • Д – эффективность бачка.

Объем системы теплоснабжения весьма трудно определяется. Поэтому для приблизительных расчетов его можно взять из соотношения 1.0 кВт – 15.0 литров

К примеру, нагрузка на отопление дома составляет 40 кВт, тогда Осис = 15 х 40 = 600 л. Для упрощения расчета можно воспользоваться онлайн расчетом. Для данных условий расчет онлайн показал, что минимальный объем бака должен быть 91 литр.

Возможные модификации баков, подходящие для полученных расчетов:

  • Wester Heating 100, 5508 руб.;
  • WRV 100, 6100 руб.;
  • STOUT 100, 5084 руб.Гидравлический расчет системы отопления и расчет по площади

Предварительная балансировка системы

Гидравлический расчет системы отопления и расчет по площади

Если гидравлическая балансировка в сети не произведена, то тепло преимущественно расходуется на первой к котлу батареи, а самые крайние останутся холодными.

Первый метод балансировки довольно точный, требует наличие проекта и гидравлического расчета тепловой сети с обозначением расходов теплоносителя на каждом ответвлении труб. Без этого точная наладка сети неосуществима.

Второй метод осуществляется с использованием регулировочной арматуры, встроенной на каждом участке либо стояке.

И третий выполняется с применением специально предназначенного электронного прибора, присоединяемого к контрольной арматуре.

Обзор программ для гидравлических вычислений

Прежде всего, с целью упрощения гидравлического расчета внутридомовых систем теплоснабжения лучше обратиться к узкоспециализированным программам. Но их не очень много, хотя выбрать всё же есть из чего. Некоторые из них бесплатные, а иные – в демо вариантах.

Наиболее популярные программы для расчета гидравлики отопительной сети:

  1. «Oventrop CO» – ПО вполне справится с расчетами для загородного домовладения для однотрубной/двухтрубной системы. У нее широкий потенциал: от выбора Ду труб до выполнения анализов расхода теплоносителя. Все итоги можно перевести в Виндовс, работает программа бесплатно.
  2. «Instal-Therm HCR» способна рассчитать схему радиаторного и наружного теплоснабжения. В нее включены еще 3 ПО: San для любой воды, Heat&Energy – для определения потерь тепла и Scan – для анализа схем отопления. Распространяется бесплатно в виде пробной версии.
  3. «HERZ C.O.» – бесплатное ПО для гидравлического расчёта одно и двухтрубной схемы теплоснабжения, как для новых, так и для отремонтированных помещениях, с водяным и гликолиевым теплоносителем. Программа обладает свидетельство качества ООО ЦСПС.
Читайте также:  Виды водонагревателей: накопительный, проточный, электрический, газовый, бойлер косвенного нагрева, преимущества и недостатки

Фотографии по тексту для наглядности о сказанном

Гидравлический расчет системы отопления и расчет по площади
Гидравлический расчет системы отопления и расчет по площади
Гидравлический расчет системы отопления и расчет по площади

  1. Схема гидравлического расчета участка сети
  2. Формулы расчета Д труб  отопления
  3. Выбор расширительного бака
  4. Видео по теме

Таким образом, можно подвести итог, что гидравлический расчет тепловых сетей очень важный и ответственный этап проектирования систем теплоснабжения любого объекта от небольшого дачного домика до жилого квартала с десятками тысяч квадратных метров. Прежде всего, такой расчет помогает правильно выбрать все необходимое оборудование и запорно-регулировочную арматуру, чтобы обеспечить оптимальные характеристики работы тепловой сети.

Как сделать гидравлический расчет системы отопления — формулы, справочные данные

Гидравлический расчет системы отопления и расчет по площади

Отопление на основе циркуляции горячей воды — наиболее распространенный вариант обустройства частного дома. Для грамотной разработки системы необходимо иметь предварительные результаты анализа, так называемый гидравлический расчет системы отопления, увязывающий давления на всех участках сети с диаметрами труб. В статье мастер сантехник расскажет, что собой представляет гидравлический расчет системы отопления, какие величины нуждаются в подсчетах и главное: как рассчитать их, не располагая точными значениями гидравлического сопротивления всех участков, отопительных приборов и элементов запорной арматуры.

Что такое гидравлический расчет и зачем он нужен

Гидравлический расчет системы отопления и расчет по площади

Гидравлический расчет (далее ГР) – это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр).

Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос – определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной.

Производится он на основании законов гидравлики – специального раздела физики, посвященного движению и равновесию в жидкостях.

  • Теория гидравлического расчета системы отопления
  • Теоретически ГР отопления основан на следующем уравнении:
  • ΔP = R•l + z
  • Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:
  • ΔP – линейные потери давления;
  • R – удельные потери давления в трубе;
  • l – длина труб;
  • z – потери давления в отводах, запорной арматуре.

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб: 

ΔPтрение = (λ/d)*(v²ρ/2)

Это уравнение Дарси – Вейсбаха. Давайте расшифруем его:

  • λ – коэффициент, зависящий от характера движения трубы;
  • d – внутренний диаметр трубы;
  • v – скорость движения жидкости;
  • ρ – плотность жидкости.

Из этого уравнения устанавливается важная зависимость – потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

ΔPарматура = ξ*(v²ρ/2)

Здесь:

  • ξ – коэффициент местного сопротивления (далее КМС).
  • v – скорость движения жидкости.
  • ρ – плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность – чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на “незамерзайку” возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

  • ΔP =ΔPтрение +ΔPарматура=((λ/d)(v²ρ/2)) + (ξ(v²ρ/2)) = ((λ/α)l(v²ρ/2)) + (ξ*(v²ρ/2)) =  R•l + z

Отсюда получаем следующие равенства для R и z:

  • R = (λ/α)*(v²ρ/2) Па/м;
  • z = ξ*(v²ρ/2) Па.

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

  1. Приближенные формулы расчета гидравлического сопротивления
  2. Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:
  3. R = 5104 v1.9 /d1,32   Па/м

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

  • Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:
  • d = 0.75√G  мм
  • Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Гидравлический расчет системы отопления и расчет по площади

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

Гидравлический расчет системы отопления и расчет по площади

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина “Гидравлические расчеты инженерных систем”:

Гидравлический расчет системы отопления и расчет по площади

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления

Гидравлический расчет системы отопления и расчет по площади

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач.

Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ.

Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG – бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ – целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток – отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток – платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

  1. Видео
  2. В сюжете — Гидравлический расчёт системы отопления в программе VALTEC.PRG

В сюжете — Почему в одном доме, можно совместить любые схемы отопления, а в другом нет, мнение специалиста

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции.

Читайте также:  Освещение аварийное - виды, требования и назначние

По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ. Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас.

По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект.

В продолжение темы посмотрите также наш обзор Как сделать тепловой расчёт системы отопления — формулы, справочные данные и конкретный пример

Гидравлический расчет системы отопления: как рассчитать гидравлическое сопротивление, скорость теплоносителя, примеры — Теплый Дом

25.06.2019 Гидравлический расчет системы отопления и расчет по площади

  • Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.
  • Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.
  • Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

  1. Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.
  2. Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.
  3. Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.
  4. На данном этапе проектирования определяются:
  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

  • При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.
  • Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени
  • Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участка Длина участка в метрах Количество приборов а участке, шт.
1-2 1,8 1
2-3 3,0 1
3-4 2,8 2
4-5 2,9 2

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир.

Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления.

Далее на каждом участке размер трубы уменьшают на один шаг.

Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение – ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м3;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.
  1. Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.
  2. Символ ξ в формуле означает коэффициент местного сопротивления.
  3. Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.
  4. Гидравлическая увязка системы производится на основании:
  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

  • Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где
  • S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).
  • Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 750С, tо = 600С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

  1. На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:
  2. 0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.
  3. Варианты двухтрубной отопительной системы
  4. Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Читайте также:  Почему газовая плита бьет током: обзор возможных причин и способов их устранения

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Видео на тему

Источник:

Как сделать гидравлический расчет системы отопления – теория и практика

Гидравлический расчет системы отопления частного дома: пример, расчет объема теплоносителя

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб.

Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома.

Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору.

Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше.

Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.
  • Для первого участка расчет теплоносителя выглядит так:
  • 860 х 2 / 20 = 86 кг/ч.
  • Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:
  • GV = G /3600ρ, где:
  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку.

Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение.

При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях.

Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать.

Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину.

Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть.

То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику.

Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Ссылка на основную публикацию
Adblock
detector