Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Источники освещения, называемые люминесцентными, в отличие от снабженных нитью накала аналогов, для работы нуждаются в пусковых устройствах, называемых балластом.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер.

В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА).

Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Что представляет собой балласт

Балласт для ЛДС (ламп дневного света) относится к категории пускорегулирующих устройств, которые используются в качестве ограничителя тока. Необходимость в них возникает, если электрической нагрузки недостаточно для эффективного ограничения потребляемого тока.

В качестве примера можно привести обычный источник света, относящийся к категории газоразрядных. Он представляет собой устройство, у которого отрицательное сопротивление.

В зависимости от реализации, балласт может представлять собой:

  • обычное сопротивление ;
  • емкость (обладающую реактивным сопротивлением), а также дроссель;
  • аналоговые и цифровые схемы.

Рассмотрим варианты реализации, получившие наибольшее распространение.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Люминесцентная лампа, С1 и С2 – конденсаторы

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Электрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4.

При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы.

Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Фото внутреннего устройства ЭПРА

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Фото типового устройства ЭПРА

Самые распространенные причины неисправностей ЛЛ с электромагнитным балластом

Выделяют следующие проблемы:

  1. Отказ стартера. Признаки: светильник не включается, колба светится только по краям, светится стартер, но лампа не запускается, ЛЛ мигает стробоскопом. Решение: замена. На заметку! Проверить стартер на работоспособность можно с помощью обыкновенной лампы накаливания с патроном. Подключите один провод от патрона в розетку, а другой через стартер. С исправным стартером лампа «Ильича» должна работать. См. рисунок ниже. Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды
  2. Отказ ЛЛ. Признаки: черные края колбы, мигание ЛЛ стробоскопом, слабое свечение, светильник не работает. Решение: замена. Совет! Часто дешевые светильники не включаются из-за потери контакта в ламподержателях. Из-за высокой температуры они плавятся. Поэтому можно отделаться лишь заменой гнезда или восстановлением контакта с лампой/стартером.
  3. Отказ дросселя. Признаки: сразу бросаются в глаза почернение обмотки и расплавленные клеммы. Проверить состояние дросселя своими руками можно с помощью мультиметра в режиме измерения сопротивления. У исправного оно составляет 30-40 Ом. Если мультиметр показывает меньше, дроссель закорочен, и его лучше заменить.

Виды балласта

Наибольшее распространение получили электромагнитная и электронная реализация балласта. Расскажем подробно о каждой из них.

Электромагнитная реализация

В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе).  Вторым необходимым элементом  является стартер, регулирующий процесс, необходимый для «зажигания».

Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе.

Ниже показаны два варианта ПРА.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Работа осуществляется по следующему принципу:

  • при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
  • замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
  • в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
  • стартер остывает, и его электроды из биметалла размыкаются;
  • размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».

После перехода  осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.

Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:

  • на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
  • источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
  • расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
  • в процессе работы дросселем издается характерный шум.

Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.

Электронная реализация

Балласт электронного типа, по своей сути, является преобразователем напряжения, при помощи которого осуществляется питание ЛДС. Изображение такого устройства показано на картинке.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Существует множество вариантов реализации электронных балластов. Можно представить характерную для многих устройств этого типа общую блок- схему, которая за небольшими исключениями, используется во  всех ЭПРА. Ее изображение представлено на рисунке.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Многие производители добавляют в устройство блок коррекции коэффициента мощности, а также схему управления яркостью.

Существует два наиболее распространенных способа запуска источников, представляющих собой ЛДС, при помощи электронной реализации балласта:

  1. перед подачей на катоды ЛДС зажигающего потенциала их предварительно подвергают разогреванию. Благодаря высокой частоте поступающего напряжения, достигается две задачи: существенное увеличение КПД и устраняется мерцание. Заметим, что в зависимости от конструкции балласта, зажигание может быть моментальным или постепенным (то есть яркость источника будет постепенно нарастать);
  2. комбинированный метод, он характерен тем, что в процессе «зажигания» принимает участие колебательный контур, который должен войти в резонанс до того, как в колбе ЛДС произойдет разряд. Во время резонанса происходит повышение напряжения, поступающего на катоды, а рост тока обеспечивает их подогрев.

В большинстве случаев при комбинированном методе запуска схема реализована таким образом, что нить накала катода ЛДС (после последовательного подключения через емкость)  представляет собой часть контура.

Когда происходит разряд в газовой среде люминесцентного источника, это приводит к изменению параметров колебательного контура. В результате он выходит из состояния резонанса. Соответственно, происходит падение напряжения до штатного режима.

Пример схемы такого устройства показан на рисунке.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

В данной схеме автогенератор построен на двух транзисторах. На ЛДС поступает питание с обмотки 1-1 (которая является повышающей у трансформатора Тр).

При этом такие элементы как емкость С4 и дроссель L1 являются последовательным колебательным контуром, с резонансной частотой, отличной от генерируемой автогенератором.

 Подобные схемы электронного балласта широко распространены во многих бюджетных настольных светильниках.

Видео: как сделать балласт для ламп

Говоря об электронном балласте, нельзя не упомянуть про компактные ЛДС, которые рассчитаны под стандартные патроны Е27 и Е14. В таких устройствах балласт встроен в общую конструкцию.

  • Установленный внутри источника электронный балласт
  • В качестве примера реализации ниже показана схема балласта энергосберегающей ЛДС Osram мощностью 21Вт.
  • Схема балласта для компактной ЛДС Osram

Необходимо заметить, что в связи с особенностями конструкции, к электронным элементам таких устройств предъявляются серьезные требования. В продукции неизвестных изготовителей, может использоваться более простая элементная база, что становится частой причиной выхода компактных ЛДС из строя.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Преимущества

Электронные устройства имеют много преимуществ перед электромагнитными ПРА, перечислим основные из них:

  • электронные пускорегулирующие устройства не вызывают мерцание ЛДС при ее работе и не создают постороннего шума;
  • схема на электронных элементах потребляет меньше энергии, легче весит и более компактна;
  • возможность реализации схемы, производящей «горячий старт», в этом случае происходит предварительный нагрев катодов ЛДС. Благодаря такому режиму включения срок службы источника значительно продлевается;
  • электронное пускорегулирующее устройство не нуждается в стартере, поскольку оно само отвечает за формирование необходимого для старта и работы уровней напряжения.
Читайте также:  Как сделать водородный генератор для дома своими руками

Эпра для компактных лдс

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт.

Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8.

При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

Балласт для люминесцентных ламп: зачем нужен, как работает, виды + как подобрать

Главная › Электрика

Электромагнитный или электронный балласт для люминесцентных ламп нужен для нормальной работы этого источника освещения. Главная задача пускорегулирующего аппарата – преобразовывать постоянное напряжение в переменное. У каждого из них есть свои плюсы и минусы.

Как работает ЛЛ с электромагнитным балластом?

Обратите внимание на эту схему подключения. Маркировка LL1 – это балластник. Внутри ламп дневного света находится газовая среда.

С увеличением тока напряжение между электродами в лампе постепенно падает, а сопротивление отрицательное.

Балласт используется как раз для того, чтобы ограничивать ток, а также создает повышенное кратковременное напряжение зажигания ламп, так как в обычной сети его не хватает. Этот элемент еще называют дросселем.

В подобном устройстве используется стартер – небольшая лампа тлеющего разряда (Е1). В ней находятся два электрода. Один из них – биметаллический (подвижный).

В исходном положении они разомкнуты. Замыкая контакт SA1 и подавая напряжение на схему, ток сначала не проходит через источник освещения, а вот в стартере между двумя электродами появляется тлеющий разряд. Происходит нагрев электродов, и биметаллическая пластина в результате выгибается, замыкая контакт. Проходящий через балласт ток возрастает, нагревая электроды люминесцентной лампы.

Далее электроды в стартере размыкаются. Возникает процесс самоиндукции. Дроссель создает высокий импульс напряжения, который и зажигает ЛЛ.

Через нее проходит номинальный ток, но затем он падает в два раза из-за снижения напряжения на дросселе. Электроды стартера остаются в разомкнутом положении до того, пока горит лампочка.

А конденсаторы С2 и С1 увеличивают КПД и уменьшают реактивные нагрузки.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Плюсы классического электромагнитного балласта:

  • низкая стоимость;
  • простота в использовании.
  • шум работающего дросселя;
  • мерцание ЛЛ;
  • долгое зажигание лампы;
  • вес и крупные габариты;
  • до 15 % потерь энергии из-за опережения переменного напряжения тока по фазе (коэффициент мощности);
  • плохое включение в среде с низкой температурой.

На заметку! Проблему энергопотерь можно решить подключением (параллельно сети) конденсатора с емкостью 3-5 мкФ.

Совет! Балласт надо подбирать строго в соответствии с мощностью лампы. В противном случае ваш светильник может сломаться преждевременно.

Самые распространенные причины неисправностей ЛЛ с электромагнитным балластом

Выделяют следующие проблемы:

  1. Отказ стартера. Признаки: светильник не включается, колба светится только по краям, светится стартер, но лампа не запускается, ЛЛ мигает стробоскопом. Решение: замена. На заметку! Проверить стартер на работоспособность можно с помощью обыкновенной лампы накаливания с патроном. Подключите один провод от патрона в розетку, а другой через стартер. С исправным стартером лампа «Ильича» должна работать. См. рисунок ниже. Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды
  2. Отказ ЛЛ. Признаки: черные края колбы, мигание ЛЛ стробоскопом, слабое свечение, светильник не работает. Решение: замена. Совет! Часто дешевые светильники не включаются из-за потери контакта в ламподержателях. Из-за высокой температуры они плавятся. Поэтому можно отделаться лишь заменой гнезда или восстановлением контакта с лампой/стартером.
  3. Отказ дросселя. Признаки: сразу бросаются в глаза почернение обмотки и расплавленные клеммы. Проверить состояние дросселя своими руками можно с помощью мультиметра в режиме измерения сопротивления. У исправного оно составляет 30-40 Ом. Если мультиметр показывает меньше, дроссель закорочен, и его лучше заменить.

Как работает ЛЛ с электронным балластом

Из-за массы недостатков электромагнитного балласта создали новый, более долговечный и технологичный ЭПРА. Это единый электронный блок питания. Сейчас он самый распространенный, так как лишен недостатков, имеющихся в ЭмПРА. К тому же он работает без стартеров.

Для примера, возьмем схему любого электронного балласта.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Входящее напряжение выпрямляется, как обычно, диодами VD4-VD7. Затем идет фильтрующий конденсатор С1. Его емкость зависит от мощности лампы. Обычно руководствуются расчетом: 1 мкФ на 1 Вт мощности потребителя.

Далее заряжается конденсатор С4 и пробивается динистор CD1. Образующийся импульс напряжения задействует транзистор Т2, после чего в работу подключается полумостовой автогенератор из трансформатора TR1 и транзисторов Т1 и Т2.

Электроды лампы начинают разогреваться. К этому добавляется колебательный контур, входящий в электрический резонанс перед разрядкой из дросселя L1, генератора и конденсаторов С2 и С3. Его частота составляет около 50 кГц.

Как только конденсатор С3 заряжается до напряжения запуска, интенсивно нагреваются катоды, и происходит плавное зажигание ЛЛ. Дроссель сразу же ограничивает ток, а частота генератора падает.

Колебательный контур выходит из резонанса, и устанавливается номинальное рабочее напряжение.

Плюсы электронных балластов:

  • малый вес и небольшие габариты за счет высокой частоты;
  • высокая светоотдача благодаря повышенному КПД;
  • нет миганий у ЛЛ;
  • защита лампы от перепадов напряжения;
  • отсутствие шума при работе;
  • долговечность благодаря оптимизации режима запуска и работы;
  • есть возможность установить моментальный пуск или с задержкой.

Минус электронных балластов – только лишь высокая стоимость.

Обратите внимание! Электронный дешевый балласт для люминесцентных ламп работает, как и ЭмПРА: лампа дневного света зажигается от большого напряжения, а горение поддерживается малым.

Причина поломок ламп с электронным балластом, а также их ремонт

Да, ничего вечного не бывает. Ломаются и они. А вот ремонт электронного балласта куда сложнее, нежели чем электромагнитного. Здесь нужны навыки в пайке и знания радиодела. И не помешает также знать, как проверить электронный балласт на работоспособность, если нет заведомо рабочей ЛЛ.

Снимите лампу со светильника. Замкните выводы нитей накала, например, скрепкой. И между ними подключите лампу накаливания. См. рисунок ниже.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

При подаче питания исправный балласт зажжет лампочку.

Совет! После ремонта балласта, перед включением его в сеть, лучше подключить последовательно еще одну лампу накаливания (40 Вт). Это к тому, что если обнаружится короткое замыкание, она ярко засветится, а детали аппарата останутся невредимыми.

Чаще всего в электронном балласте «вылетают» 5 деталей:

  1. Предохранитель (резистор на 2-5 Ом).
  2. Диодный мост.
  3. Транзисторы. Вместе с ними по цепи могут сгореть и резисторы номиналом 30 Ом. Выходят из строя они в основном из-за скачков напряжения.
  4. Чуть реже обнаруживается пробой конденсатора, соединяющего нити накаливания. Его емкость – всего 4,7 нФ. В дешевых светильниках ставят такие пленочные конденсаторы с рабочим напряжением 250 – 400 В. Этого очень мало, поэтому лучше заменить их на конденсаторы той же емкости, только с напряжением 1,2 кВ, а то и 2 кВ.
  5. Динистор. Часто обозначается как DB3 или CD1. Проверить его без специального оборудования нельзя. Поэтому, если все элементы на плате целы, а балласт по-прежнему не работает, попробуйте поставить другой динистор.

Если у вас нет знаний и опыта в электронике, лучше просто замените свой балласт на новый. Сейчас каждый из них выпускается с инструкцией и схемой на корпусе. Внимательно ознакомившись с ней, вы сможете без труда подключить балласт самостоятельно.

Читайте также:  Дефлектор на дымоход газового котла: требования и монтажные инструкции

Как выбрать балласт для люминесцентных ламп — устройство, как работает, виды

Балласт для люминесцентных ламп

11.12.2019

Для корректной и длительной работы люминесцентных ламп необходим балласт. Это специальное устройство, с помощью которого лампа подключается к электрической сети. Он обеспечивает быстрый и корректный розжиг лампы, ограничивает рабочий ток и поддерживает работу осветительного прибора.

Какие бывают балласты, их свойства и особенности функционирования, как выбрать и подключить устройство – рассмотрим подробней.

Люминесцентные лампы

Такой источник света, как люминесцентные лампы, знаком людям еще с 1856 года. После многих доработок под маркой General Electric в 1938 году появились привычные нам люминесцентные лампы. Они совершенствовались и позже, стали вторым по распространенности источником света в мире.

Принцип работы газоразрядных ламп (а люминесцентные относятся к газоразрядным лампам низкого давления) основан на ультрафиолетовом излучении от дугового электрического разряда низкой температуры внутри колбы.

Ультрафиолет воздействует на люминофор – специальный внутренний слой на колбе, который и испускает свечение нужного спектра. Сейчас без таких источников света сложно представить освещение в школах, офисах, больницах и других предприятиях.

Они экономичны, отличаются долгим сроком службы, дают комфортный для глаз дневной свет, не греются при работе.

Но люминесцентные лампы нельзя включить напрямую в электрическую сеть. Необходимы дополнительные устройства – балласт.

Зачем нужен балласт для люминесцентных ламп

Разряд в газовой смеси внутри люминесцентной происходит при подаче напряжения на электроды. Возникающее электрическое поле пробивает газ, электрическая цепь замыкается, и в лампе возникает тлеющий разряд низкой температуры. Однако лампа будет мигать, а ток при появлении разряда может перегреть электроды и вывести их из строя. Здесь и поможет балласт.

Основные функции балласта для люминесцентных ламп:

  • Предварительный разогрев электродов лампы и подача стартового импульса для разряда.
  • Преобразование напряжения из низкочастотного в высокочастотное, чтобы избежать мигания ламп.
  • Ограничение величины тока до безопасного уровня.
  • Снижение импульсных помех и компенсация реактивной мощности при запуске.

Могут быть и другие дополнительные функции в зависимости от конструкции и типа устройства.

Виды балластов

Наиболее популярны и широко применяются электромагнитные и электронные балласты. Они выпускаются многими производителями осветительного оборудования. Рассмотрим подробней их устройство и особенности работы.

Электромагнитный балласт для люминесцентных ламп

Пускорегулирующий аппарат электромагнитного типа (ЭмПРА) представляет собой довольно большую конструкцию (весом до 500 гр), главный элемент которой – дроссель. Также потребуются стартер и конденсатор. Принцип действия балласта сравнительно прост:

  • При подаче напряжения замыкаются электроды стартера.
  • Возрастает ток на электродах лампы.
  • От разряда стартера получается достаточный импульс, достаточный для разряда.

Преимущества ЭмПРА:

  • Доступная стоимость устройства.
  • Простота схемы подключения.

Есть и недостатки:

  • Эффект стробирования – мерцание лампы с частотой напряжения сети (50 Гц). Такой свет будет некомфортным, глаза от него устают, а работоспособность падает.
  • Специфический гул во время работы.
  • Длительное время запуска лампы – от 2-3 секунд в начале эксплуатации балласта до 5-8 в конце срока службы.
  • Сравнительно большой расход электроэнергии.
  • Вес и габариты конструкции.
  • Надежность.

Электронный балласт для люминесцентных ламп

Электронные пускорегулирующие аппараты (ЭПРА) появились около 30 лет назад и активно вытесняют с рынка ЭмПРА. Устройство создано на современных электронных устройствах – диодах, микросхемах, транзисторах.

Несмотря на то, что в ЭПРА уже включены: стартер, фильтры и другие устройства, балласт легкий и компактный.

Принцип его работы устройства может – от предварительного разогрева катода лампы, до комбинированного метода запуска за счет резонанса в контуре балласта.

Основные преимущества ЭПРА:

  • Повышение световой отдачи от лампы.
  • Простота схемы подключения – в балласте уже встроены все необходимые элементы.
  • Компактность блока.
  • Нет мерцания лампы.
  • Отсутствует гул, характерный для ЭмПРА.
  • Продление срока эксплуатации осветительного прибора.
  • Уменьшение расходов на электроэнергию до 30%.
  • Возможность управлять мощностью лампы (диммирование).

Основной недостаток ЭПРА – сравнительно высокая стоимость, особенно если речь о качественном оборудовании известных производителей.

Балласты для компактных ламп

Компактные люминесцентные лампы сопоставимы по размерам с лампами накаливания, имеют стандартный цоколь E14 и E27. Стеклянная трубка, покрытая люминофором, изогнута и помещается в обычный светильник, рассчитанный на лампу накаливания. Такие лампы часто называют «энергосберегающими», хотя они уступают светодиодным лампам и это не совсем верно.

Выбирать, покупать, подключать балласт для такой лампы не придется – он уже встроен в цоколь. В таких лампах применяются только электронные балласты из-за габаритов.

Схемы подключения

Применяются разные схемы подключения балласта. Самая простая схема – включение ЭМПРА (дросселя соответствующей мощности) и стартера для одной лампы. Для снижения помех при включении в схему добавляются конденсаторы. Добавление второй лампы не вызовет сложности – она включается последовательно первой и работает на одном дросселе.

Схема балласта для люминесцентных ламп с ЭПРА еще проще – стартер и другие устройства уже вмонтированы в блок, а схема подключения к цепи указана на его корпусе. Обычно есть: мощность и количество ламп, технические параметры устройства и другие детали.

Для компактных ламп достаточно просто вкрутить цоколь в патрон светильника – никаких дополнительных проводов, устройств не нужно.

Выбор балласта

Обращаем внимание на следующие параметры устройств:

  • ЭмПРА или ЭПРА – если кратко – первые дешевле, вторые экономичней и долговечней. Подробней об их особенностях смотрите информацию выше.
  • Мощность – должна соответствовать мощности лампы, иначе она сгорит или будет светить не в полную силу.
  • Производитель – продукция известных брендов будет дороже, но качественней в работе и надежней к износу. Дешевое устройство может прослужить недолго и стать причиной поломки лампы и даже светильника. Одна из неплохо зарекомендовавших себя по цене и качеству марок – российский бренд IEK.
  • Потери мощности на балласте – та часть, которая пойдет на нагрев самого устройства. В норме для ЭмПРА – 5-10 Вт, для ЭПРА меньше. Показатель влияет на энергопотребление, нагрев блока и срок службы.
  • Входное напряжение – параметр говорит о типе сети, на которую рассчитан прибор и о возможности компенсировать скачки напряжения.
  • Коэффициент балласта – покажет насколько изменится светоотдача лампы сравнительно с работой без балласта. В идеале – близок к единице.
  • Шум – выбор категории по шумности зависит от места установки.
  • Температура нагрева – в ЭПРА ниже, чем в ЭмПРА. Большой нагрев при долгой работе лампы может даже привести к плавлению корпуса.
  • Количество и схема подключаемых ламп – эффективней, когда к одному балласту можно подключить несколько ламп, а параллельная схема включения – надежней (не погаснут все лампы при поломке одной).
  • Степень защиты от пыли и влаги – параметр зависит от условий в месте монтажа оборудования.
  • Диапазон допустимых внешних температур – в среднем колеблется в рамках от -20°C до +40°C. Нужны другие значения – выбирайте тщательней.

Как проверить балласт люминесцентной лампы

Как убедиться в исправности балласта, если лампа перестала работать? Один из характерных признаков – фальстарт. После включения лампа начинает светить не сразу, а 3-4 раза мигает, и лишь потом загорается.

Проверить электрический балласт люминесцентных ламп можно и простым экспериментом – на обесточенном светильнике снять трубку лампы, закоротить нити накала и подключить между ними лампу накаливания. Если при подаче напряжения лампа светится – балласт исправен. Нет – меняем на новое устройство с аналогичными характеристиками работы.

А как выбрать нужный балласт, какие они бывают и зачем нужны – вы теперь знаете.

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Люминесцентная лампа, которая снабжена ЭПРА, начинает работать, пройдя несколько необходимых фаз.

А именно:

  1. Включение. Из выпрямителя ток поступает в конденсатор, где частота пульсаций сглаживается. После этого высокое постоянное напряжение начинает падать на полумостовой инвертор, а в это время конденсатор низкого напряжения электрода лампы и микросхемы начинают заряжаться.
  2. Предварительный нагрев. После генерирования колебаний ток начинает идти через центр полумоста и электрода лампы. Постепенно частоты колебаний будут снижаться, а напряжение расти. Весь этот процесс, в среднем занимает около 1,5 секунды после включения. При этом лампа раньше положенного времени не включится, так напряжение низкое. За это время лампа успевает нагреться.
  3. Поджиг. Частота полумоста снижается до минимума. У люминесцентных ламп минимальное значение напряжения зажигания составляет 600 вольт. Дроссель помогает преодолеть току данное значение – повышает напряжение, и лампа включается.
  4. Горение. Частота тока останавливается на номинальной рабочей частоте. В процессе работы конденсаторы постоянно заряжаются. Мощность лампы находится в стабильном напряжении, даже если есть перепады напряжения в сети.

ЭПРА необходимы люминесцентным лампам, так как благодаря этому устройству нет сильного нагрева. Поэтому с пожарной безопасностью проблем не будет. А еще устройство обеспечивает равномерное свечение. Поэтому лампы с ЭПРА пользуются спросом.

Для начала необходимо подготовить нужные инструменты и материалы: отвертки, бокорезы, прибор, определяющий фазу тока, изолента, острый нож, крепежи. Перед установкой, необходимо найти место, где будет располагаться ЭПРА внутри лампы

При этом важно учесть длину всех проводов и доступ к нужным деталям. ЭПРА крепится к лампе с помощью крепежных материалов

После этого устройство подключается к разъему лампы. При этом необходимо помнить, что мощность электронного балласта должна быть больше, чем у самой лампы.

Потом следует соединить все контакты с оборудованием и протестировать. При правильной установке лампа загорится без дополнительного разогрева и мерцаний.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Читайте также:  Вакуумирование кондиционера своими руками: общие правила и инструктаж по проведению работ

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.

Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА.

Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек.

Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие.

В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Включение люминесцентных светильников

Есть три основных вида пусковых устройств ЛДС.

С помощью стартёра и дросселя

При такой схеме включения нити накала соединяются последовательно со стартёром и баластником. Другое название электромагнитного баластника – дроссель. Это катушка индуктивности, ограничивающая ток через светильник.

При включении светильника стартёр подключает вольфрамовые спирали последовательно с дросселем. При их нагреве происходит эмиссия электронов, что облегчает появление между электродами разряда.

Периодически стартёр разрывает цепь и, если в это время происходит запуск лампочки, то напряжение между электродами падает, и он больше не включается.

Если же разряд не возникает, то стартёр снова замыкает цепь, и процесс зажигания повторяется.

Недостатки этой схемы:

  • длительное время запуска, особенно зимой в неотапливаемых помещениях;
  • дроссель гудит при работе;
  • свет мерцает с частотой 100Гц, что незаметно глазу, но может вызвать головную боль.

Электромагнитный баластник для люминесцентных ламп

Интересно. Для уменьшения мерцания в светильниках из двух ламп одна из них включается через конденсатор. При этом колебания света в них не совпадают, что благоприятно влияет на освещённость в помещении.

Умножитель напряжения

Для работы таких светильников раньше использовались самодельные умножители напряжения. Роль токоограничивающего баласта в этой схеме играют конденсаторы С3 и С4, а С1 и С2 создают высокое напряжение, необходимое для появления внутри трубки разряда.

Высоковольтный разряд зажигает ЛДС сразу, но мерцание такого светильника сильнее, чем в схеме со стартёром и дросселем.

Умножитель напряжения

Интересно. Умножитель напряжения позволяет использовать колбы с перегоревшими вольфрамовыми спиралями.

Электронный пускорегулирующий аппарат (ЭПРА)

Электронный балласт для люминесцентных ламп – это преобразователь напряжения, зажигающий и питающий лампу во время работы. Вариантов реализации таких устройств много, но собраны они по одной блок-схеме. В некоторых конструкциях добавляется регулировка яркости.

Запуск светильников с ЭПРА производится двумя способами:

  • Перед включением нити накала разогреваются, из-за чего запуск откладывается на 1-2 секунды. Яркость света может нарастать постепенно или сразу включаться на полную мощность;
  • Зажигание лампы производится при помощи колебательного контура, который входит в резонанс с колбой. При этом происходит постепенное повышение напряжения и разогрев нитей накала.

Такие устройства обладают рядом достоинств:

  • питание светильника осуществляется напряжением высокой частоты, что устраняет мерцание света;
  • компактность, что позволяет уменьшить габариты светильника;
  • быстрое, но плавное включение, продлевающее срок службы лампы;
  • отсутствие шума и нагрева при работе;
  • высокий КПД – до 95%;
  • встроенные защиты от короткого замыкания.

Электронные ПРА изготавливаются на 1, 2 или на 4 лампы.

Подключение ЭПРА

Включение приборов со сгоревшими спиралями

Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора:

Схема включения ЛДС со сгоревшими спиралями

Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня.

Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника

В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана.

  • Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В:
  • Включение двух ЛДС со сгоревшими спиралями

Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]