Резонанс: определение явления в физике и использования в технике

Важно! Узнайте, чем закончилась проверка учебного центра «Инфоурок»? Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Резонанс: определение явления в физике и использования в технике

Описание презентации по отдельным слайдам:

1 слайд Описание слайда:

ПРЕЗЕНТАЦИЯ НА ТЕМУ: РЕЗОНАНС

2 слайд Описание слайда:

РЕЗОНАНС РЕЗКОЕ ВОЗРАСТАНИЕ АМПЛИТУДЫ КОЛЕБАНИЙ, В РЕЗУЛЬТАТЕ СОВПАДЕНИЯ СОБСТВЕННОЙ ЧАСТОТЫ С ЧАСТОТОЙ ВЫНУЖДАЮЩЕЙ СИЛЫ Существует при вынужденных колебаниях

3 слайд Описание слайда:

УЧЕТ И ИСПОЛЬЗОВАНИЕ РЕЗОНАНСА В БЫТУ И ПРОМЫШЛЕННОСТИ Раскачивание тяжелого языка большого колокола при действии небольшой силы с частотой, равной собственной частоте языка. Сильное раскачивание железнодорожного вагона при случайном совпадении его собственной частоты колебаний на рессорах с частотой ударов колес на стыках рельсов Сильное раскачивание пароходов на волнах.

4 слайд Описание слайда:

ЯВЛЕНИЕ РЕЗОНАНСА МОЖЕТ ПРИВОДИТЬ К КРУПНЫМ РАЗРУШЕНИЯМ: 1906 год Россия Санкт-Петербург Мост через Фонтанку обрушился от резонанса, вызванного отрядом солдат, марширующих строем

5 слайд Описание слайда:

ЯВЛЕНИЕ РЕЗОНАНСА МОЖЕТ ПРИВОДИТЬ К КРУПНЫМ РАЗРУШЕНИЯМ: В 1940 ГОДУ США МОСТ ТЭЙКОМА ОБРУШИЛСЯ ОТ АВТОКОЛЕБАНИЙ, ВЫЗВАННЫХ ВЕТРОМ

6 слайд Описание слайда:

АКУСТИЧЕСКИЙ РЕЗОНАНС Знаменитый певец Шаляпин мог запеть так, что лопались плафоны в люстрах. Резонанс вызван совпадением частоты собственных колебаний стеклянного сосуда с частотой звука, но петь при этом необходимо так же громко, как Шаляпин

7 слайд Описание слайда:

АКУСТИЧЕСКИЙ РЕЗОНАНС широко применяется в музыкальных инструментах : пустые полости в них имеют такой объем и форму, что усиливают извлекаемый звук, издаваемый струнами.

8 слайд Описание слайда:

АКУСТИЧЕСКИЙ РЕЗОНАНС Аналогично, для усиления звука проектируются объем и форма внутренних помещений, в которых планируется петь или играть музыку

9 слайд Описание слайда:

Ящик камертона, корпус музыкальных инструментов, трубы духовых инструментов – резонаторы, усиливающие их звучание Человек имеет собственный резонатор – полость рта

10 слайд Описание слайда:

РЕЗОНАНС НА СЛУЖБЕ У ДРЕВНИХ ЛЮДЕЙ Как без подъемных кранов и другой техники древние люди передвигали многотонные глыбы на различные расстояния? СТОУНХЕНДЖ

11 слайд Описание слайда:

УДИВИТЕЛЬНЫЙ ФАКТ Если связать толстой металлической проволокой два фортепиано в разных комнатах и играть на одном из них, то второе (с нажатой педалью!) будет играть ту же мелодию само собой, без пианиста

12 слайд Описание слайда:

УДИВИТЕЛЬНЫЙ ФАКТ Шум, который мы слышим, когда подносим к уху раковину, вовсе не шум прибоя, а звук собственный крови, струящейся по венам в ухе

13 слайд Описание слайда:

А ВЫ ЗНАЕТЕ? Инфразвук высокой интенсивности, влекущий за собой резонанс, из-за совпадения частот колебаний внутренних органов и инфразвука, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов. Следует принимать особые меры защиты против появления звуковых колебаний со следующими частотами, потому — что совпадение частот приводит к возникновению резонанса:

14 слайд Описание слайда:

Собственные (резонансные) частоты некоторых частей тела человека 20-30 Гц резонанс головы 40-100 Гц резонанс глаз 0.5-13 Гц резонанс вестибулярного аппарата 4-6 Гц резонанс сердца 2-3 Гц резонанс желудка 2-4 Гц резонанс кишечника 6-8 Гц резонанс почек 2-5 Гц резонанс рук 5-7 Гц вызывает чувство страха и паники

15 слайд Описание слайда:

РЕЗОНАНС ТОКОВ резонанс в электрической цепи переменного тока – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре при совпадении частоты внешнего переменного напряжения с частотой свободных незатухающих колебаний в контуре Явление электрического резонанса широко используется при осуществлении радиосвязи в схемах настройки радиоприёмников (для выделения сигнала требуемой частоты), усилителей, генераторов высокочастотных колебаний. Явление электрического резонанса необходимо учитывать при расчёте изоляции электрических цепей ! Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов

16 слайд Описание слайда:

НА ЯВЛЕНИИ РЕЗОНАНСА ОСНОВАНА РАБОТА МНОГИХ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ. НАПРИМЕР, РЕЗОНАНСНЫЙ ВОЛНОМЕР ИСПОЛЬЗУЕТСЯ ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ И ЯВЛЯЕТСЯ ОСНОВНОЙ ЧАСТЬЮ ГЕНЕРАТОРА СТАНДАРТНОГО ВИДА

17 слайд Описание слайда:

ОТВЕТЬТЕ НА ВОПРОСЫ: В чем заключается явление, называемое резонансом? К каким колебаниям – свободным или вынужденным – применимо понятие резонанса? Приведите примеры, показывающие, что в одних случаях резонанс может быть полезным явлением, а в других вредным?

18 слайд Описание слайда:

Источник: https://infourok.ru/prezentaciya-po-fizike-rezonans-1878832.html

Резонанс в электрической цепи — Класс!ная физика

«Физика — 11 класс»

В механике резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы. Резонанс возможен и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.

При механике резонанс выражен при малом трении. В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R. Наличие активного сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника (проводник нагревается).

  • Поэтому резонанс в электрическом колебательном контуре выражен отчетливо при малом активном сопротивлении R.
  • Если активное сопротивление мало, то собственная циклическая частота колебаний в контуре:

Резонанс: определение явления в физике и использования в технике

Сила тока при вынужденных колебаниях достигает максимальных значений, когда частота переменного напряжения, приложенного к контуру, равна собственной частоте колебательного контура:

Резонанс: определение явления в физике и использования в технике

Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

Амплитуда силы тока при резонансе.

При резонансе в колебательном контуре создаются условия для поступления энергии от внешнего источника в контур. Мощность в контуре максимальна в том случае, когда сила тока совпадает по фазе с напряжением.

  1. В механике аналогично: при резонансе в механической колебательной системе внешняя сила (аналог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).
  2. После включения внешнего переменного напряжения амплитуда колебаний силы тока нарастает постепенно, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

Резонанс: определение явления в физике и использования в технике

  • тогда:
  • ImR = Um
  • Отсюда амплитуда установившихся колебаний силы тока при резонансе определяется уравнением

Резонанс: определение явления в физике и использования в технике

При R → 0 резонансное значение силы тока неограниченно возрастает: (Im)рез → ∞. Наоборот, с увеличением R максимальное значение силы тока уменьшается.

Зависимость амплитуды силы тока от частоты при различных сопротивлениях (R1 < R2 < R3):

Резонанс: определение явления в физике и использования в технике

Одновременно с увеличением силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке индуктивности. Эти напряжения при малом активном сопротивлении во много раз превышают внешнее напряжение.

Использование резонанса в радиосвязи

Явление электрического резонанса используется в радиосвязи. На явлении резонанса основана вся радиосвязь. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте.

С антенной индуктивно связан колебательный контур.

Резонанс: определение явления в физике и использования в технике

Из-за электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е.

из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту ω0 осуществляется путем изменения емкости конденсатора.

В этом обычно состоит настройка радиоприемника на определенную радиостанцию.

Необходимость учета возможности резонанса в электрической цепи

Если цепь не рассчитана на работу в условиях резонанса, то его возникновение может привести к аварии. Чрезмерно большие токи могут перегреть провода.

  1. Большие напряжения приводят к пробою изоляции.
  2. Итак, при вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний.
  3. Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Генератор на транзисторе. Автоколебания» Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре.

Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление.

Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Источник: https://class-fizika.ru/11_30.html

Применение явления электрического резонанса в технике | Обучонок

Исследовательская работа: 

Резонанс в природе и технике

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом.

Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать.

В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рисунке 1.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Резонанс: определение явления в физике и использования в технике

Рисунок 1.Резонансные кривые.

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной добротностью: Q2 > Q3 > Q4. На низких частотах (ω > ω0) xm → 0.

Резонанс в механике, электротехнике, СВЧ, акустике, оптике и астрофизике

Механика. Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать.

Резонансные явления могут вызвать необратимые разрушения в различных механических системах. В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую.

Читайте также:  Реле времени: принцип работы, виды, схемы подключения

Струна. Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает еёрезонанснуючастоту. Однако частоты, не гармонические колебания, которые и воспринимаются как музыкальные ноты.

Электроника. В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле и повторяется многократно, по аналогии с механическим маятником.

СВЧ. В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями.

Оптика. В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри- Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна.

Виды оптических резонаторов типа Фабри-Перо:

  1. Плоско-параллельный;
  2. Концентрический (сферический);
  3. Полусферический;
  4. Конфокальный;
  5. Выпукло-вогнутый.

Астрофизика. Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа.

В результатеэти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

Акустика. Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях.

Пример звукового или акустического резонанса мы имеем в следующем опыте.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу (рисунке 2). Ящики нужны потому, что они усиливают звук камертонов.

Это происходит вследствие резонанса между камертоном и столбом воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками. Подробнее мы объясним действие этих ящиков ниже, при изучении распространения звуковых волн в воздухе. В опыте, который мы сейчас разберем, роль ящиков чисто вспомогательная.

Резонанс: определение явления в физике и использования в технике

Рисунок 2. Резонанс камертонов

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т. е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона (1) действуют через воздух с некоторой силой на второй камертон (2), заставляя его совершать вынужденные колебания. Так как камертон 1 совершает гармоническое колебание, то сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1.

Если частота силы та же, что и собственная частота камертона 2, то имеет место резонанс — камертон 2 сильно раскачивается. Если же частота силы иная, то вынужденные колебания камертона 2 будут настолько слабыми, что мы их не услышим.

Так как камертоны обладают очень небольшим затуханием, то резонанс у них острый. Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один перестает откликаться на колебания другого. Достаточно, например, приклеить к ножкам одного из двух одинаковых камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Мы видим, что все явления при вынужденных колебаниях происходят у камертонов так же, как и в опытах с вынужденными колебаниями груза на пружине.

Если звук представляет собой ноту (периодическое колебание), но не является тоном (гармоническим колебанием), то это означает, как мы знаем, что он состоит из суммы тонов: наиболее низкого (основного) и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо из гармоник звука.

Опыт можно произвести с упрощенной сиреной и камертоном, поставив отверстие резонатора камертона против прерывистой воздушной струи.

Если частота камертона равна 300Гц, то, как легко убедиться, он будет откликаться па звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях — резонанс на первый обертон сирены, и при 100 прерываниях — резонанс па второй обертон, и т. д.

Нетрудно воспроизвести со звуковыми колебаниями опыт, аналогичный опыту с набором маятников. Для этого нужно только иметь набор звуковых резонаторов — камертонов, струн, органных труб. Очевидно, струны рояля или пианино образуют как раз такой и притом очень обширный набор колебательных систем с разными собственными частотами.

Если, открыв рояль и нажав педаль, громко пропеть над струнами какую-нибудь ноту, то мы услышим, как инструмент откликается звуком той же высоты и сходного тембра.

И здесь наш голос создает через воздух периодическую силу, действующую на все струны.

Однако откликаются только те из них, которые находятся в резонансе с гармоническими колебаниями — основным и обертонами, входящими в состав спетой нами ноты.

Ядерный магнитный резонанс (ЯМР) — резонансное (избирательное) поглощение радиочастотного излучения ядрами некоторых атомов (например, водорода), помещенными в постоянное магнитное поле. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты «выстраиваются», подобно железным опилкам вблизи постоянного магнита.

Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала.

Избирательно подавая энергию строго определенной частоты, можно исследовать в живых клетках определенные химические элементы и соответствующие обменные процессы, происходящие с их участием.

Например, избирательно активируя ядра атомов водорода, можно изучать распределение воды внутри тканей, что является ценным для онкологов.

Резонансное стимулирование атомов фосфора поможет визуализировать процессы энергетического обмена на клеточном уровне, а также диагностировать мышечную дистрофию.

В конце XX в. на основе ЯМР был разработан метод магнитно-резонансной томографии (МРТ), ставший одним из основных диагностических инструментов врача практически во всех направлениях медицины. МРТ основан на исследовании взаимодействия органов и тканей человека и внешних электромагнитных полей. МРТ позволяет изучать живые клетки, не нарушая их жизнедеятельности.

Источник: https://obuchonok.ru/node/5592

Резонанс — определение, условия и применение физического явления — Помощник для школьников Спринт-Олимпиады

Определение физического явления под названием резонанс даётся в старших классах школьного курса физики во время изучения колебаний.

Однако суть и практическое применение явления, связанного с резким увеличением амплитуды колебаний при совпадении частот (собственной и внешнего воздействия), для многих остаётся загадкой.

И чтобы разобраться в этом, нужно чётко уяснить понятие процесса колебаний, а также иметь представление о физических величинах, его характеризующих.

Колебания: частота и амплитуда

Появление резонанса неразрывно связано с колебаниями, то есть с процессом изменений состояния какой-нибудь системы, который повторяется во времени и происходит около определённой точки равновесия, периодически отклоняясь то в сторону со знаком «минус», то в противоположную — со знаком «плюс».

При этом не важна природа самой колебательной системы и место её нахождения, а важно лишь наличие исходной точки состояния, к которой она возвращается через строго определённый промежуток времени.

Это могут быть механические колебания, периодические изменения значения силы электрического тока в цепи, звук и так далее.

Основными характеристиками колебательной системы являются амплитуда (максимальное отклонение от положения равновесия) и частота (количество повторений движений системы за единицу времени). И эти величины играют главную роль как в описании самого явления, так и в условии резонанса.

Суть явления

Впервые применение резонанса в виде примера встречается в работах итальянского учёного и техника Торричелли, жившего в Средние века.

А точное определение этому явлению, связанному с вынужденными колебаниями, первым дал Галилео Галилей в трактате о маятниках и музыкальных струнах.

Объяснение же природы электромагнитного резонанса принадлежит основоположнику современной электродинамики Генри Максвеллу.

Механический аспект

В качестве простейшего примера для описания механического резонанса можно привести раскачивание детских качелей. Амплитудой в этом случае будет наибольшая высота подъёма качели над уровнем горизонта, а частотой — количество прохождений самой низкой точки за 1 секунду.

Запущенные качели, представляя собой колебательную систему, имеют собственную частоту и начальную амплитуду, увеличить которую можно довольно легко, если толкать качели с частотой, совпадающей с их собственной. Усилия, прикладываемые в этом случае, не имеют решающего значения. На увеличение высоты подъёма будет влиять в большей степени совпадение частот колебаний качелей и периодичности внешнего воздействия.

Если толчки производить не периодично или с частотой, сильно отличающейся от периодичности движений самой системы, то результат будет совершенно противоположным. Качели не увеличат амплитуду раскачиваний, наоборот, колебания системы будут затухать, что в результате приведёт к полной остановке в положении равновесия.

Основой работы любого механического резонатора является взаимное преобразование двух видов энергий:

  • потенциальной;
  • кинетической.

В случае с качелями, которые по свойствам представляют собой простой маятник, потенциальная энергия, согласно кривой графика зависимости, достигает максимума в самой верхней точке, а по мере опускания вниз — к положению равновесия — постепенно переходит в кинетическую, набирая наибольшее значение при прохождении самой нижней точки. Зависит же потенциальная энергия, согласно формуле, от высоты подъёма и массы, а кинетическая — прямо пропорциональна квадрату скорости и той же массе.

Электронные устройства

Электромагнитный резонанс используется в различных электронных устройствах, где есть цепи с так называемым колебательным контуром, состоящим из катушки индуктивности и конденсатора. Возникает он при определённой частоте, позволяя энергии магнитного поля индуктивного элемента превращаться в энергию электрического поля конденсатора и обратно.

Механизм такого явления заключается в том, что переменное магнитное поле катушки индуктивности создаёт электрический ток для зарядки конденсатора, а при обратном процессе, когда конденсатор разряжается, ток генерирует магнитное поле в катушке. Такой процесс может повторяться неограниченное количество раз, подобно механическому маятнику.

Резонансные явления в электрических колебательных контурах, как правило, используются в настроечных элементах либо в электрических фильтрах.

Оптика и акустика

Самым известным примером использование резонанса в оптическом диапазоне считается резонатор Фабри-Перо. Этот прибор, основу которого составляет пара зеркал, расположенных друг против друга, позволяет создавать при помощи резонанса стоячую световую волну.

Читайте также:  Соединение электрических проводов клеммниками ваго без скрутки

При работе с акустическими приборами для увеличения громкости также не обходятся без резонанса. Практически все музыкальные инструменты в своих конструкциях содержат резонаторы. Это и трубка у флейты, и корпус у скрипки, гитары или барабана.

По сути, резонанс в физике представляет собой отклик колеблющейся системы на внешнее воздействие, который проявляется в увеличении максимального отклонения от положения равновесия. Такой отклик ещё принято называть частотно-избирательным, так как само явление возникает лишь при совпадении частот — воздействия внешней силы и собственных колебаний системы.

Характерные примеры

Хрестоматийным и очень ярким примером резонанса считается случай разрушения структуры моста при прохождении по нему роты солдат строевым шагом. Причиной такого эффекта стало совпадение частоты шага группы людей и собственной частоты колебаний сооружения, что привело к резкому увеличению амплитуды колебаний моста.

С разрушением мостовых конструкций связан и термин «Такомский мост». Но в этом случае причиной аварии стала не рота солдат, а порывы ветра.

При расчётах проектантами не была учтена возможность резонанса, в который вошло полотно моста с порывами ветра определённой скорости.

После происшествия специалисты провели многочисленные исследования и расчёты, которые впоследствии стали фундаментом современного мостостроения.

Ещё один пример проявления резонанса, с которым уже сталкиваются в быту — это принцип работы микроволновки. В результате генерации СВЧ-излучения с частотой 2.

45 ГГц в молекулах воды, попадающих в зону воздействия, наблюдается резкое увеличение амплитуды колебаний, что приводит к увеличению температуры.

Таким образом, благодаря совпадению частоты внешнего воздействия и собственной у молекул воды, происходит разогрев продуктов внутри микроволновой печи.

В полемике и риторике

Понятие резонанс встречается также и в общественных науках. И это слово обозначает отклик общества на определённые события, публичные высказывания или действия политиков, а также реакцию людей на происшествия глобальных масштабов.

Философский словарь трактует это понятие как единомыслие двух личностей, то есть наличие одинаковой реакции на то или иное событие. Это может быть как синхронная антипатия, так и симпатия, сострадательное переживание или возмущение каким-то поступком.

В словаре иностранных слов можно найти объяснение резонансу как отклику, отголоску или впечатлению. В этом смысле слово употребляется для оценки произведений культуры:

  • спектаклей;
  • фильмов;
  • концертов;
  • книг.

Для показа эмоционального подъёма, единодушного порыва слово «резонанс» часто используется многими ораторами для подчёркивания значимости происходящего. В этом значении понятие приобретает смысл сильного отклика и одинаковой оценки.

С явлением резонанса люди сталкиваются каждый день, даже не задумываясь об этом.

Но если в споре или при произношении речи с трибуны это слово можно использовать для усиления впечатления от сказанного, то с понятием резонанса как физического явления не всё так просто и безобидно. Резонанс может принести как пользу, так и вред.

И о его возможном возникновении нужно всё-таки не забывать, когда захочется покачаться на подвесном пешеходном мостике или же поставить в микроволновку посуду из металла (правилами использования запрещается).

ПредыдущаяСледующая

Источник: https://Sprint-Olympic.ru/uroki/fizika/96607-rezonans-opredelenie-ysloviia-i-primenenie-fizicheskogo-iavleniia.html

Проект по физике «Механический резонанс»

Проект по физике «Механический резонанс»

        Цель: Изучить информацию о механическом резонансе, его         применением и учете.

        Задачи: 1. Собрать и систематизировать информацию о применении и         учете         механического резонанса в природе, быту и технике.

        2. Продемонстрировать опыты по наблюдению механического         резонанса.

        Каждый из нас любит веселое занятие — раскачивание на качелях. Развлекая себя или ребенка, мы прилагаем силу нужного направления в строго определенный момент.

 Очень странно выглядел бы человек, который пытается раскачать качели, подталкивая их не вовремя.  Почему прикладывая силу не вовремя нельзя раскачать качели? Этот вопрос долго оставался без ответа, пока на уроке физики мы не изучили резонанс.

Это явление природы очень загадочно. Мы решили немного приподнять завесу тайны.

        Механическим резонансом  называют явление резкого возрастания амплитуды колебаний, когда  частота вынужденных колебаний  совпадает с собственной частотой   физической системы. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн. Наиболее отчетливо резонанс наблюдается, если трение в системе минимально.  

Для предотвращения этого явления либо увеличивают трение, либо изменяют параметры самой колебательной системы.

        Как любое природное явление, резонанс не может быть однозначно полезным или вредным, он имеет свои плюсы и минусы. Когда он вреден, его учитывают и стараются предотвратить, если полезен – применяют.

        Каждая деталь, механизм, машина или постройка  имеют собственную частоту колебания. Если они при работе попадают под действие вынуждающей силы, весьма опасными могут быть последствия при совпадении частот.

        20 января (2 февраля) 1905 года по Египетскому цепному мосту в Санкт — Петербурге проходил эскадрон гвардейской кавалерии, навстречу ему двигались 11 саней с возницами. В этот момент мост рухнул на лёд Фонтанки. Основная версия заключается в том, что конструкция моста не выдержала слишком ритмичных колебаний от слаженного шага военных, отчего в ней произошел резонанс.

Эта версия была включена в школьную программу по физике в качестве наглядного примера, кроме того, была введена новая военная команда «идти не в ногу», она даётся строевой колонне перед выходом на любой мост. Разрушения Такомского моста произошло из-за того же резонанса в Америке в 1940 году, моста в Анжере, во Франции в 1850 году. В 2010 году  «танцевал» мост в Волгограде.

        Механический резонанс может возникнуть, например, в процессе разгона ротора механизма при какой-то промежуточной частоте вращения; с увеличением частоты резонанс прекращается. Резонанс может возникнуть не во всем механизме, а только в какой-либо его части; при резонансе она может отломиться.

        Некоторые летчики-испытатели с ужасом сообщали, что при полете их самолет вдруг начинало сильно трясти, и через несколько минут он буквально рассыпался в воздухе.  Расследования таких случаев дали ответ о виновнике аварии: это был резонанс. При работе двигателей совпали частоты их колебаний с собственной частотой колебаний корпуса самолета.

Размах колебаний все увеличивался, и самолет просто рассыпался в воздухе. Известны случаи, когда приходилось перестраивать океанские лайнеры, чтобы уменьшить вибрацию. Любое тело имеет свою собственную частоту колебаний. И если суметь подобрать такую же частоту внешней силы, разрушение будет неизбежно. Ярчайшим примером тому служат Иерихонские трубы.

По преданию, когда они затрубили, стены Иерихона рухнули. Таким же образом можно разбить стакан. А любители Шрека вспомнили птичку, которая лопнула от пения Фионы Отклик, называемый резонансом, проявляется и так.

Вот загудело-завибрировало оконное стекло без каких-либо ударов или других заметных воздействий; а вот при прослушивании негромкой музыки начал откликаться бокал, стоящий в шкафу, причем на одной и той же ноте.

        Перенесемся мысленно в древний Рим, где на сцене Колизея игрались различные трагедии. Громадный амфитеатр устроен таким образом, что все присутствующие слышат даже шепотом произнесенное слово на сцене. Здесь работает резонанс.

Ведь и современные концертные залы строят по особым законам, создавая условия для резонанса. Да и мы с вами используем его для общения. При говоре или пении мы округляем рот, усиливая звук. Обезьяны-ревуны пользуются этим явлением гораздо лучше нас, их рев разносится на несколько километров.

Да и обычные лягушки в брачный период   издают достаточно громкие крики. У тех и других есть резонаторный мешок, который они раздувают при вопле. Люди подсмотрели в природе явление резонанса и стали использовать его в своих целях.

Многие из нас неоднократно любовались изящными формами музыкальных инструментов, но лишь некоторые задают себе вопрос: «А для чего скрипке нужна такая форма?»  И тут все дело в резонансе. Звуки разной высоты резонируют в разных местах причудливо изогнутого инструмента.

Все усилители звука имеют размеры, подходящие для резонанса. Стоит только немного их изменить, звук тут же «исчезает». Шум морской раковины тоже порожден резонансом.

        На явлении резонанса основано действие прибора, позволяющего измерять частоту колебаний. Этот прибор называется частотомером.  Частоту механических колебаний обычно измеряют с помощью вибрационных механических и электрических частотомеров.

, используемых совместно с преобразователями механических колебаний в электрические. Простейший вибрационный механический частотомер,  действие которого основано на резонансе,  представляет собой ряд упругих пластин, укрепленных одним концом на общем основании.

Пластины подбирают по длине и массе так, чтобы частоты их собственных колебаний составили некую дискретную шкалу, по которой и определяют значение измеряемой частоты.

Механические колебания, воздействующие на основание частотомера, вызывают вибрацию упругих пластин, при этом наибольшая амплитуда колебаний наблюдается у той пластины, у которой частота собственных колебаний равна (или близка по значению) измеряемой частоте.

Опыты по наблюдению резонанса.

  1. Подвесим к веревке, закрепленной в стойках, несколько маятников разной длины. Отклоним маятник A от положения равновесия и предоставим его самому себе. Он будет совершать свободные колебания, действуя с некоторой периодической силой на веревку. Веревка в свою очередь будет действовать на остальные маятники. В результате все маятники начнут совершать вынужденные колебания с частотой колебаний маятника A. Мы увидим, что все маятники начнут колебаться с частотой, равной частоте         колебаний         маятника A. Однако их амплитуда колебаний, кроме маятника C,         будет меньше, чем         амплитуда колебаний маятника A. Маятник же C, длина         которого равна длине         маятника A, будет раскачиваться очень сильно.         Следовательно, наибольшую амплитуду колебаний имеет маятник,         собственная частота колебаний  которого  совпадает с частотой         вынуждающей силы. В этом случае говорят, что         наблюдается   резонанс.
  2. Расположим два одинаковых камертона рядом, повернув их друг к другу теми сторонами ящичков, где нет стенок. Ударим левый камертон молоточком. Через секунду заглушим его рукой. Мы услышим, что звучит второй камертон, который мы не ударяли. Говорят, что правый камертон резонирует, то есть улавливает энергию звуковых волн от левого камертона, в результате чего увеличивает амплитуду собственных колебаний.

Вывод:  Изучив  явление механического резонанса, стало понятно, что это непростое явление. О нем надо помнить и учитывать, так как оно может принести пользу и вред. Если резонанс приносит пользу, то это используют и применяют, а если  вред, —  то учитывают и уменьшают действие резонанса.  

Литература:

Читайте также:  Котлы отопления на твердом топливе: виды твердотопливного оборудования

Источник: https://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2015/03/09/proekt-po-fizike-mekhanicheskiy-rezonans

Резонанс в технике

Строя мосты, инженеры принимали в расчет только давление веса переходящих по ним людей и перевозимых грузов. Но неожиданные катастрофы доказали, что при сооружении мостов нужно считаться еще с какими-то другими воздействиями на их балки.

Однажды по висячему мосту близ Анжера (Франция) проходил отряд солдат, которые четко отбивали шаг, ударяя одновременно то правой, то левой ногой по настилу. Под ударами ног мост слегка раскачивался, но вдруг оборвались поддерживающие цепи, и мост вместе с людьми рухнул в реку. Погибло более двухсот человек.

Общественное мнение было возмущено. Строителей моста обвиняли в небрежности расчетов, в недопустимой экономии металла… Инженеры недоумевали: что вызвало обрыв цепей моста, прослужившего уже несколько десятков лет?

Как всегда, начались и споры. Старые практики, не раздумывая долго, утверждали, будто цепи перержавели и не выдержали тяжести солдат.

Однако осмотр оборванных цепей не подтвердил этого объяснения. Металл не был глубоко поврежден ржавчиной. Поперечное сечение звеньев обеспечивало необходимый запас прочности.

Так и не удалось тогда найти причину обрушения моста.

Прошло несколько десятков лет, и подобная же катастрофа повторилась в Петербурге.

Кавалерийская часть переходила по Египетскому мосту через Фонтанку. Лошади, обученные ритмическому шагу, одновременно ударяли копытами. Мост слегка покачивался в такт ударам. Неожиданно оборвались цепи, поддерживающие мост, и он вместе с всадниками рухнул в реку.

Снова разгорелись забытые споры. Необходимо было разрешить загадочную причину подобных катастроф, чтобы они больше не повторялись. Ведь мосты были правильно рассчитаны. Цепи должны были выдержать в несколько раз больший груз, чем вес переходивших по мостам людей и лошадей.

Какие же силы разорвали звенья цепей?

Некоторые инженеры догадывались, что обрушение мостов связано с ритмичностью ударов о настил.

Но почему катастрофы случались с висячими мостами? Почему по обыкновенным, балочным мостам безопасно переходят воинские пехотные и кавалерийские части?

Ответ на эти вопросы могло дать только изучение действия толчков при различной конструкции моста.

Балку висячего моста можно сравнить с доской, положенной концами на опоры. Когда на ней подпрыгивает мальчик, доска изгибается то вверх, то вниз. Если попасть в такт этих колебаний, то ее размахи будут становиться все больше и больше, пока наконец  доска не переломится.

Балки висячего моста также могут колебаться, хотя это менее заметно на глаз. Мост близ Анжера колебался с периодом около 1,5 секунды. Когда по нему шли солдаты, ритм их шагов случайно попал в такт собственных колебаний его балок. Незаметные размахи становились все больше. Наконец цепи не выдержали и разорвались.

Совпадение периода колебаний тела с промежутком между возбуждающими их толчками получило название резонанса.

Очень интересный опыт, иллюстрирующий явление резонанса, сделал в свое время еще Галилей. Подвесив тяжелый маятник, он стал дышать на него, стараясь, чтобы промежутки между выдыханиями воздуха приходились в такт с собственными колебаниями маятника. Каждый выдох производил совершенно незаметный толчок. Однако, постепенно накопляясь, действие этих толчков раскачало тяжелый маятник.

С явлением резонанса нередко встречаются в технике. Оно могло бы например, возникнуть при переезде поезда по балочному мосту. Когда колеса паровоза или вагонов встречают стыки рельсов, они производят толчок, передающийся балкам. В балках начинаются колебания определенной частоты. Если бы толчки попали в такт колебаний балок, то возник бы опасный резонанс.

Чтобы избежать этого явления, инженеры проектируют мосты так, чтобы период их собственных колебаний был очень короток. В этом случае промежуток времени, в течение которого Колесо пробегает от одного стыка  к другому, больше периода колебаний балок, и резонанса? не бывает.

В результате резонанса может раскачаться и тяжело нагруженное судно во время даже слабого волнения.

Равновесие судна зависит от относительного положения центра тяжести и так называемого центра давления. Вода давит со всех сторон на, погруженную в нее часть корпуса. Все силы давления можно заменить одной равнодействующей. Она приложена к центру тяжести вытесненной воды и направлена прямо вверх. Точка приложения ее и есть центр давления. Обычно он лежит выше центра тяжести.

Пока корпус судна держится ровно, сила тяжести и давление прямо противоположны и уравновешивают друг друга. Но если судно почему-либо наклонилось, То центр давления переместится в сторону. Теперь на него действуют две силы — сила тяжести и давление. Они стремятся выправить положение судна. Вследствие этого судно выпрямится и по инерции качнется в другую сторону.

Так оно станет колебаться подобно маятнику. Это собственные колебания судна, возникающие под влиянием бортовых ударов волн. Если эти удары попадут в такт качки судна, то размахи судна будут все увеличиваться. Качка судна может стать опасной и даже послужить причиной его гибели.

Такая катастрофа и произошла с английским броненосцем «Кептен», спущенным на воду в 1870 году.

Это судно было одето в толстую стальную броню. В невысоких тяжелых башнях броненосца были установлены крепостные орудия. Экипаж насчитывал 550 матросов и офицеров. Предполагалось, что «Кептен» будет одним из самых грозных броненосцев английского флота.

Толстая стальная броня, которой была обшита надводная часть корпуса, тяжелые башни и мощные артиллерийские орудия слишком повысили центр тяжести. В первую же бурю броненосец сильно накренился, лег на бок, опрокинулся вверх килем и пошел ко дну. Лишь немногим из его команды удалось спастись.

Источник: https://www.stroitelstvo-new.ru/tehnika/rezonans-v-tehnike.shtml

Что такое этот резонанс, и практические примеры возникновения

Физическое определение и привязка к объектам

Резонанс, согласно определению, можно понять как достаточно простой процесс:

  • существует тело, находящееся в состоянии покоя или колеблющееся с определенной частотой и амплитудой;
  • на него действует внешняя сила с собственной частотой;
  • в случае, когда частота внешнего воздействия совпадает с собственной частотой рассматриваемого тела, возникает постепенное или резкое возрастание амплитуды колебаний.

Однако, на практике явление рассматривается в виде гораздо более сложной системы. В частности, тело может быть представлено не как единый объект, а сложная структура. Резонанс возникает при совпадении частоты внешней силы с так называемой суммарной эффективной колебательной частотой системы.

Резонанс, если рассматривать его с позиций физического определения, непременно должен приводить к разрушению объекта. Однако, на практике существует понятие добротности колебательной системы. В зависимости от ее значения, резонанс может приводить к различным эффектам:

  • при низкой добротности система не способна в большой мере сохранять поступающие извне колебания. Поэтому наблюдается постепенное повышение амплитуды собственных колебаний до того уровня, когда сопротивление материалов или соединений не приводит к стабильному состоянию;
  • высокая, близкая к единице добротность — самая опасная среда, в которой резонанс приводит, зачастую, к необратимым последствиям. Среди них может быть как механическое разрушение объектов, так и выделение большого количества тепла на уровнях, которые могут привести к возгоранию.

Также, резонанс возникает не только при действии внешней силы колебательного характера. Степень и характер реакции системы, в большой степени, отвечает за последствия действия направленных извне сил. Поэтому резонанс может возникнуть в самых разных случаях.

Хрестоматийный пример

Самый употребительный пример, которым описывается явление резонанса — это случай, когда рота солдат шла по мосту и обрушила его. С физической точки зрения в этом явлении нет ничего сверхъестественного. Шагая в ногу, солдаты вызвали колебания, которые совпали с собственной эффективной колебательной частотой системы моста.

Множество людей посмеивалось над данным примером, считая явление только теоретически возможным. Но достижения технического прогресса доказали теорию.

В сети существует реальное видео поведения пешеходного моста в Нью-Йорке, который постоянно сильно раскачивался и едва не рухнул. Автор творения, которое собственной механикой подтверждает теорию, когда резонанс возникает от движения людей, даже хаотического — французский архитектор, автор подвесного моста Виадук Мийо, сооружения с самыми высокими опорными колоннами.

Инженеру пришлось потратить много времени и денег, чтобы снизить добротность системы пешеходного моста до приемлемого уровня и добиться того, чтобы не было значительных колебаний. Пример работы над данным проектом — это иллюстрация того, как последствия резонанса можно обуздать в системах с низкой добротностью.

Примеры, которые повторяют многие

Еще один пример, который даже участвует в анекдотах — это раскалывание посуды звуковыми колебаниями, от занятий на скрипке и даже пения. В отличие от роты солдат, данный пример неоднократно наблюдался и даже специально проверялся. Действительно, возникающий при совпадении частот резонанс приводит к раскалыванию тарелок, бокалов, чашек и другой посуды.

Это пример развития процесса в условиях системы с высокой добротностью.

Материалы, из которых сделана посуда — это достаточно упругие среды, в которых колебания распространяются с малыми затуханиями.

Добротность таких систем очень высока, и хотя полоса совпадения частот довольно узкая, резонанс приводит к сильному увеличению амплитуды, в результате чего материал разрушается.

Пример действия постоянной силы

Разрушение подвесного моста под действием ветра — это иллюстрация того, как относительно постоянная сила вызывает резонанс. Происходит следующее:

  • порыв ветра отклоняет часть конструкции — внешняя сила способствует возникновению колебаний;
  • при обратном движении конструкции, сопротивления воздуха недостаточно, чтобы погасить колебание или снизить его амплитуду;
  • вследствие упругости системы, начинается новое движение, которое усиливает ветер, продолжающий дуть в одном направлении.

Это пример поведения комплексного объекта, где резонанс развивается на фоне высокой добротности и значительной упругости, под действием постоянного воздействия силы в одном направлении. К сожалению, Такомский мост — это не единственный пример обрушения конструкций. Случаи наблюдались и наблюдаются по всему миру, в том числе и в России.

Контролируемое применение

Резонанс может применяться и в контролируемых, четко определенных условиях. Среди всего множества примеров можно легко вспомнить радиоантенны, даже разрабатываемые любителями. Здесь применяется принцип резонанса при поглощении энергии электромагнитной волны. Каждая система разрабатывается под отдельную полосу частот, в которой наиболее эффективна.

Установки МРТ применяют другой тип явления — различное поглощение колебаний клетками и структурами человеческого тела. Процесс ядерного магнитного резонанса использует излучение различной частоты. Резонанс, возникающий в тканях, приводит к легкому распознаванию конкретных структур. Меняя частоту, можно исследовать те или иные области, решать разнообразные задачи.

Источник: https://elektro.guru/osnovy-elektrotehniki/rezonans-eto-fizicheskoe-yavlenie-teoriya-i-realnye-primery.html

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]