Применение силовых диодов выпрямительного типа большой мощности

Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов.

Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д.

Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла.

В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Применение силовых диодов выпрямительного типа большой мощностиКонструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия.

Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.
    Применение силовых диодов выпрямительного типа большой мощностиВыпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла.
    Применение силовых диодов выпрямительного типа большой мощностиВыпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В).
    Применение силовых диодов выпрямительного типа большой мощностиРис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Применение силовых диодов выпрямительного типа большой мощностиТаблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Применение силовых диодов выпрямительного типа большой мощностиРис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку.

Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает.

То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Применение силовых диодов выпрямительного типа большой мощностиРис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Применение силовых диодов выпрямительного типа большой мощностиПринцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Применение силовых диодов выпрямительного типа большой мощностиДиодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Читайте также:  Бесперебойники для компьютера: ТОП-12 лучших ИБП для компа

Источник: https://www.asutpp.ru/vypryamitelnye-diody.html

Выпрямительные диоды: для чего применяются, принцип действия, ВАХ

Выпрямительный диод особая разновидность диодов, созданные для трансформации переменного тока, если необходимо получить постоянный на входе или выходе. Это не единственная работа, которую выполняют данные диоды.

Они нашли свое применение во всех сферах и направлениях радиоэлектроники. Они применяются для создания цепей управления, для коммутации, контроля напряжения, в цепях, где протекает сильный ток.

От номинального значения тока, производится классификация выпрямительных диодов. Они бывают следующих видов:

По сфере применения на диоды из элементов германия (Gr) или кремния (Si). В статье будут описаны все особенности, технические характеристики устройства этих радиодеталей. Также читатель найдет познавательные видеоролики и интересный материал из научной статьи по данной теме.

Применение силовых диодов выпрямительного типа большой мощности

Технология изготовления и конструкция

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем.

На поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника.

При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью.

Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.

Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором.

Применение силовых диодов выпрямительного типа большой мощности

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Материал в тему: Что такое кондесатор

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD).

 При положительных полупериодах напряжения, поступающих на анод диода диод открывается.

В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления.

Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Будет интересно➡  Что такое полупроводниковые диоды и как они устроены

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока.

Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн).

Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов.

Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Применение силовых диодов выпрямительного типа большой мощности Силовой выпрямительный диод.

Диодный мост

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода.

Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус. Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «~», указывающие, где у моста вход, а где выход.

Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста. Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике.

Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения. Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя.

В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Применение силовых диодов выпрямительного типа большой мощности

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства.

Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи.

Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Применение силовых диодов выпрямительного типа большой мощности

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала.

Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах.

Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Будет интересно➡  Что такое фотодиод

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве.

Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации.

А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Применение силовых диодов выпрямительного типа большой мощности Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность.

Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Читайте также:  Вентиляционные трубы на крыше дома: обустройство выхода вытяжного трубопровода через крышу

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Будет интересно➡  Диод 1n4007: характеристики, маркировка и datasheets

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Применение силовых диодов выпрямительного типа большой мощности

Заключение

В статье описаны все тонкости и нюансы работы и устройства выпрямительных диодов и схема их устройства. Более подробно о них можно узнать из стать Что такое диоды. 

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.go-radio.ru

www.electrik.info

www.gaw.ru

www.sesaga.ru

Источник: https://ElectroInfo.net/poluprovodniki/dlja-chego-nuzhny-vyprjamitelnye-diody.html

Диоды силовые

Применение силовых диодов выпрямительного типа большой мощности

  • Основу мощного силового диода составляет пластина монокристалла кремния, в которой сформирован p-n-переход, обладающий односторонней электропроводимостью.
  • Для защиты хрупкой пластины от тепловых и механических напряжений, её припаивают серебряным припоем с обеих сторон к дискам из вольфрама или молибдена толщиной до 3 мм, которые выполняют роль термокомпенсаторов.
  • Выпрямительный элемент диода монтируется в герметичном корпусе штыревой или таблеточной конструкции.
Диод штыревоймалогабаритный Диод штыревойс гибким выводом Диод таблеточный
Применение силовых диодов выпрямительного типа большой мощности Применение силовых диодов выпрямительного типа большой мощности Применение силовых диодов выпрямительного типа большой мощности

Основными параметрами выпрямительных диодов являются:

— максимально допустимый средний прямой ток IF(AV) — максимально допустимое обратное напряжение URRM — максимально допустимая частота fmax

Диоды штыревые малогабаритные

Серия Средний прямой токIF(AV) (TС, ºC) Класс по напряжениюURRM / 100 Корпус Резьба Применяемый охладитель
Д112-10ДЛ112-10 10А (150ºC) 1…16 SD1 М5 О111
Д112-16ДЛ112-16 16А (150ºC)
Д112-25ДЛ112-25 25А (150ºC)
Д122-32ДЛ122-32 32А (150ºC) 1…16 SD2 М6 О221
Д122-40ДЛ122-40 40А (150ºC)
Д132-50ДЛ132-50 50А (150ºC) 1…16 SD3 М8 О231, О331
Д132-63ДЛ132-63 63А (150ºC)
Д132-80ДЛ132-80 80А (150ºC)

Диоды штыревые с гибким выводом

Серия Средний прямой токIF(AV) (TС, ºC) Класс по напряжениюURRM / 100 Корпус Резьба Применяемый охладитель
Д151-125 125А (140ºC) 3…16 SD5 М12 О151
Д151-160 160А (140ºC)
Д161-200 200А (145ºC) 3…18 SD6 М20 О171О371О471ОМ101
Д161-250 250А (140ºC)
Д161-320 320А (130ºC)
Д171-400 400А (145ºC) 3…18 SD7 М24 О181О281ОМ105
Д171-500 500А (140ºC) О181О281
Диоды лавинные
ДЛ161-200 200А (115ºC) 4…18 SD6 М20 О171, О271О371, О471ОМ101
ДЛ171-320 320А (115ºC) 4…18 SD7 М24 О181О281ОМ105

Диоды таблеточные

Серия Средний прямой токIF(AV) (TС, ºC) Класс по напряжениюURRM / 100 Применяемый охладитель
Корпус PD32 – Ø54 мм, контактная площадка Ø33 мм
Д133-400 640А (100ºC)730А (85ºC) 10…40 О143
Д133-500 910А (100ºC)1020А (85ºC) 10…28
Д133-630 1040А (100ºC)1170А (85ºC) 10…32
Д133-800 1170А (100ºC)1280А (85ºC) 4…20 О143, О343
Д133-1000 1220А (100ºC)1385А (85ºC) 4…20
Д233-500 660А (100ºC)760А (85ºC) 10…44 О143, О343
Д233-630 630А (100ºC)740А (85ºC) 44…50 О143
Д233-800 800А (100ºC)920А (85ºC) 34…42 О143, О343
Корпус PD42 – Ø60 мм, контактная площадка Ø37 мм
Д143-630 900А (100ºC)1040А (85ºC) 24…40 О143, ОМ103
Д143-800 1340А (100ºC)1510А (85ºC) 18…28 О143, О243ОМ103, ОМ104
Д143-1000 1490А (100ºC)1680А (85ºC) 4…18
Д243-800 990А (100ºC)1140А (85ºC) 24…44 О143, О243ОМ103, ОМ104
Корпус PD53 – Ø75 мм, контактная площадка Ø50 мм
Д153-1250 1390А (100ºC)1650А (85ºC) 44…50 О153, О253
Д153-1600 1820А (100ºC)2100А (85ºC) 34…42
Д153-2000 2510А (100ºC)2830А (85ºC) 24…32
Д253-1600 2420А (100ºC)2750А (85ºC) 4…22 О153, О253
Д253-2000 2730А (100ºC)3090А (85ºC) 4…24
ДЛ153-1250 1250А (115ºC) 22…32 О153, О253
ДЛ153-1600 1600А (100ºC) 16…32
ДЛ153-2000 2000А (100ºC) 16…20
Корпус PD21 – Ø42 мм, контактная площадка Ø19 мм
ДЛ123-320 320А (113°C) 4…16 О123

Номинальное напряжение принято обозначать как класс диода.

Класс диода = URRM / 100

Класс диода – это значение повторяющегося импульсного обратного напряжения URRM, делённое на 100. Например, 12 класс диода обозначает напряжение 1200В.

Полярность диода (цоколевка) определяется по значку на корпусе:

При прямой полярности в штыревых диодах резьбовое основание – это анод, жесткий / гибкий вывод – это катод. При обратной полярности – наоборот, при этом обратная полярность обозначается символом «х» икс в маркировке.

Диоды прямой полярности Диоды обратной полярности

ГОСТ 20859-79 устанавливает унифицированное обозначение силовых полупроводников из следующих элементов.

Д Л 1 4 3 800 х 16 УХЛ2
1 2 3 4 5 6 7 8
  1. Первый элемент – буква, обозначающая вид полупроводникового прибора:
  2. Д – диод выпрямительный.
  3. Второй элемент – буква, определяющая функциональное назначение (свойства) прибора:
  4. Л – лавинный диод; Ч – быстровосстанавливающийся диод (время обратного восстановления < 5 мкс).
  5. Третий элемент – номер модификации конструкции (цифра от 1 до 9).
  6. Четвертый элемент – кодировка размера под ключ (для штыревых диодов) или кодировка диаметра корпуса (для таблеточных диодов):
Код Штыревое исполнение Таблеточное исполнение
Размер шестигранника под ключ, мм Внешний диаметр корпуса, мм
1 11
2 14 42
3 17 54
4 22 60
5 27 75
6 32 85
7 41 105
8 125
  • Пятый элемент – конструктивное исполнение корпуса:
  • 1 – штыревой с гибким выводом; 2 – штыревой с жестким выводом; 3 – таблеточный; 4 – под запрессовку;
  • 5 – фланцевый.

Шестой элемент – максимально допустимый средний прямой тока IF(AV) в амперах. Символ «х» – обозначает диод с обратной полярностью.

  1. Седьмой элемент – класс по напряжению (URRM / 100).
  2. Восьмой элемент – климатическое исполнение (У, УХЛ, Т) и категория размещения (2) по ГОСТ 15150-69.
  3. Также в маркировке указывается символ полярности, месяц и год изготовления, знак предприятия-изготовителя.
  4. Пример условного обозначения:
  5. ДЛ161-200-12 УХЛ2 – диод лавинный первой модификации, размер шестигранника под ключ 32 мм, штыревой конструкции с гибким выводом, максимально допустимый средний ток 200А, прямой полярности, 12 класс (повторяющееся обратное напряжение 1200В), для умеренного и холодного климата.

Диоды серий ДЛ – это лавинные выпрямительные диоды. Лавинные называются потому, что они обладают контролируемым лавинообразованием.

  • Лавинные диоды допускают в течение длительного интервала времени работу в области электрического лавинного пробоя на обратной ветви вольт-амперной характеристики:
  • Суть лавинообразования в том, что, когда на диод воздействует обратное напряжение, большее, чем напряжение пробоя, обратный ток резко возрастает.
  • В обычном, не лавинном диоде, ток сосредотачивается в отдельных точках p-n-перехода и происходит местный тепловой пробой – обычный диод выходит со строя.
  • В лавинном же диоде обратный ток равномерно распределяется по поверхности p-n-перехода, за счет чего диод способен рассеивать импульс мощности.
  • Таким образом, лавинные диоды эффективно применяются для защиты цепей от импульсных перегрузок по напряжению.

Работа при больших токах и высоких обратных напряжениях связана с выделением значительной мощности в p-n-переходе выпрямительного элемента диода. Для отвода тепла силовые диоды собирают с охладителями и токоотводами.

Охладитель характеризуется значением рассеиваемой мощности и площадью охлаждающей поверхности, и подбирается из расчета необходимого отвода тепла при рабочей мощности диода.

Охладитель для штыревых диодов представляет собой алюминиевый радиатор с резьбовым отверстием.

При сборке штыревых диодов с охладителями необходимо соблюдать закручивающий момент Md, который указывается в характеристиках диода.

В таблеточных диодах необходимое давление на прижимных контактах обеспечивается только при их сборке с охладителями. При этом значение осевого усилия на диод Fm, т.е. усилие сжатия диода, нормируется от 10 до 26 кН в зависимости от диаметра (типа) корпуса.

Читайте также:  Монтаж и подключение люстры: c выключателем, с пультом
Тип корпусатаблеточного диода Диаметр корпуса Диаметр контактной площадки Усилие сжатия,± 1,5 кН
PD21 Ø42 мм Ø19 мм 8 кН
PD32 Ø54 мм Ø33 мм 10 кН
PD42 Ø60 мм Ø37 мм 15 кН
PD53 Ø75 мм Ø50 мм 26 кН

Усилие сжатия при сборке таблеточных диодов с охладителями обеспечивается прижимным устройством охладителя с соответствующим значением прогиба траверсы. Контроль прогиба траверсы проводят с помощью индикатора часового типа.

Траверса зажимается гайками поочередно; многократно чередуя, до тех пор, пока величина прогиба траверсы не достигнет значения, установленного в таблице:

Номинальное значение прогиба траверсы – для траверсы сечением 10х25 мм:

Траверса сечением Расстояние между центрами отверстий траверсы Расстояние между рабочими поверхностями скобы для контроля прогиба траверсы Усилие сжатия Количество траверс Прогиб траверсы (траверс)
10х25 мм 116 мм 70 мм 10 кН 1 шт. 320 мкм
15 кН 1 шт. 480 мкм
26 кН 2 шт. 420 мкм

Применяются силовые диоды в различных выпрямителях, например в сварочном и гальваническом оборудовании, в неуправляемых или полууправляемых выпрямительных мостах, для предотвращения пагубного воздействия коммутационных перенапряжений.

Источник: https://asenergi.com/catalog/diody-silovye.html

Особенности применения основных видов силовых диодов

Большое значение при проектировании преобразовательных устройств имеет правильный выбор типа силовых полупроводниковых приборов. В процессе расчетов проектировщик должен учитывать множество различных причин, влияющих на нормальную работу преобразователя:

  • возникновение недопустимых перенапряжений при коммутации
  • перегрев приборов из-за повышения температуры внутри конструкции преобразователя за счет нагрева силовых элементов схемы
  • недостаточно мощный сигнал управления

Игнорирование хотя бы одной из этих причин исключает нормальную работу преобразователя.

Силовые полупроводниковые диоды предназначены для применения в преобразователях электроэнергии, а также в цепях постоянного и переменного тока различных силовых установок.

Исходя из типа приборов, диоды могут применяться в качестве выпрямительных и для защиты от коммутационных перенапряжений, в системах возбуждения мощных турбогенераторов и синхронных компенсаторов, в низковольтных выпрямителях сварки и гальванического оборудования, в автомобильных и тракторных электрогенераторах.

Диоды низкочастотные (штыревое исполнение)

Диоды Д161-200, Д161-250, Д161-320, Д171-400 предназначены для применения в электротехнических и радиоэлектронных устройствах в цепях постоянного и переменного тока частотой до 500 Гц.

Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц и многократные удары длительностью 2-15 мс с ускорением 147 м/с2.

Это диоды прямой полярности, при этом анодом диодов является медное основание, катодом — гибкий вывод.

Диоды низкочастотные (таблеточное исполнение)

Диоды Д133-400, Д133-500, Д133-800, Д143-630, Д143-800, Д143-1000, Д253-1600 предназначены для применения в цепях постоянного и переменного тока частотой до 500 Гц в электротехнических устройствах общего назначения.

Диоды устойчивы к воздействию синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2.

Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.

Диоды низкочастотные лавинные предназначены для применения в устройствах общего назначения частотой до 500 Гц.

Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц с ускорением 49м/с2, многократных ударов длительностью 2-15 мс с ускорением 147 м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2. Диоды ДЛ 161-200, ДЛ 171-320 имеют штыревое исполнение.

Анодом диодов является медное основание, катодом — гибкий вывод. Диоды ДЛ 123-320, ДЛ133-500 имеют таблеточное исполнение. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.

Применение силовых диодов выпрямительного типа большой мощности

Диоды быстровосстанавливающиеся (частотные)

Диоды ДЧ 261-250 и ДЧ 261-320 (штыревое исполнение), диоды ДЧ 243-500, 253-1000 и др.

(таблеточное исполнение) применяются в статических преобразователях электроэнергии, а также в других цепях постоянного и переменного тока частоты 2000 Гц и выше, в различных силовых установках, в которых требуются малые времена обратного восстановления и малые заряды восстановления. Эти диоды отличаются высокой нагрузочной способностью по току при высоких частотах.

Промышленные области применения основных типов силовых диодов:

  • диоды Д 161, Д171 предназначены для применения в неуправляемых и полууправляемых выпрямительных мостах, в маломощной сварочной аппаратуре.
  • диоды Д 123, Д133, Д143, Д153, Д173 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в мощных сварочных аппаратах.
  • диоды ДЛ161, ДЛ171, ДЛ123, ДЛ133, ДЛ143, ДЛ153, ДЛ173 предназначены для применения в выпрямителях для электролиза и гальваники, в источниках постоянного тока, в неуправляемых и полууправляемых выпрямительных мостах.
  • диоды ДЧ261, ДЧ133, ДЧ143, ДЧ153 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в выпрямителях для электрометаллургии, в инверторах, в преобразователях частоты для транспорта, в источниках бесперебойного питания.

Источник: АО «Протон-Электротекс»

Источник: https://www.elec.ru/articles/osobennosti-primeneniya-osnovnyh-vidov-silovyh-dio/

6 основных типов диодов и принцип их работы

Без преувеличения можно утверждать, что бурное развитие радиоэлектроники началось с момента изобретения диода. Первыми на свет появились вакуумные диодные лампы.

Но их очень быстро вытеснили полупроводниковые диоды, которые оказались экономичнее, а главное – они открыли путь к миниатюризации электронных устройств. Учитывая популярность этих полупроводников, рассмотрим 6 основных типов диодов и принцип их работы.

Строение полупроводникового диода и принцип действия

Диод состоит из двух разных полупроводников: n-типа и p-типа, к которым подсоединены электроды – анод и катод. Вся эта конструкция заключена в металлический, стеклянный или в пластиковый корпус.

Благодаря тому, что полупроводники обладают разными типами проводимостей (электронная и дырочная) они при контакте образуют зону p-n перехода (Рис. 1). С одной стороны скапливаются положительный ионы, а с другой – электроны.

Рисунок 1. Распределение зарядов в n-p переходе

Если катод подсоединить к негативному полюсу источника питания, а анод к позитивному, то под действием ЭДС произойдёт рекомбинация дырок в зоне с n-проводимостью и нейтрализация электронов в зоне с p-проводимостью.

Барьер, между двумя полупроводниками разрушится и цепь замкнётся. То есть, устройство пропустит ток от катода к аноду (на самом деле электроны устремятся к плюсовой клемме). Схема процесса изображена на рисунке 2 а.

При обратном напряжении (рис. 2 б) зона p-n перехода только усилится. Ток не потечёт. Диод при таком подключении будет находиться в закрытом состоянии. На этом принципе построена работа всех выпрямительных (силовых) радиодеталей.

Рисунок 2

Выпрямительные диоды

Данный тип электронных вентилей чаще всего встречается в блоках питания различных устройств. Диодные мостики на их основе служат для преобразования синусоидального тока в постоянный.

Рисунок 3. Выпрямительный диод большой мощности

В зависимости от типов применяемых полупроводниковых материалов, степени насыщения их различными донорами и акцепторами, полупроводники могут менять свои свойства. Это позволило создавать различные типы полупроводниковых изделий с необходимыми параметрами.

Стабилитроны

Диод, который обладает высокой проводимостью при заданном напряжении, называется стабилитроном. При достижении уровня напряжения стабилитрона, он открывается и пропускает ток почти без сопротивления. Как только разница потенциалов упадёт до заданного минимума, стабилитрон закроется и отсечёт поток электронов.

Данное свойство используется для стабилизации напряжения в электронных устройствах. Отсюда и название – стабилитрон. Один из наиболее часто встречающихся стабилитронов изображён на рис. 4.

Рисунок 4. Стабилитрон

Туннельные диоды

Благодаря множеству присадок образуется узкий p-n переход, способствующий пропускать ток в обе стороны. Это свойство отличает его от других типов вентилей. На схемах радиодетали данного типа изображаются так, как показано на рис. 5.

Рисунок 5. Туннельный диод

Варикапы

Разновидность диодов с переменной ёмкостью называют варикапами. Барьерная ёмкость этих радиодеталей зависит от обратного напряжения.

Их применяют для настройки частот генераторов, управляемых напряжением. Обозначение на схемах показано на рис. 6.

Рисунок 6. Обозначения варикапов на схемах

Светодиоды

Их ещё называют СИД или LED. (рис. 7). Эти диоды, при подаче на электроды прямого напряжения, излучают холодный свет в разных спектрах. Сегодня LED-освещение активно вытесняет традиционные источники света.

Рисунок 7. Светодиод

Фотодиод

Проводимость проводников данного типа управляется световым потоком. В темноте свойства фотодиода такие же, как в обычного вентиля. Обратный ток прямо пропорционален уровню освещения, в т. ч. инфракрасного. Применяется в качестве датчика, принимающего сигналы от пульта дистанционного управления.

Рисунок 8. Фотодиод

Источник: https://zen.yandex.ru/media/id/5d38230cd5135c00ad1384d4/5d473d59a1b4f100ae2c2824

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]