Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Сопротивление различных проводников зависит от материала, из которого они изготовлены.

Можно проверить это практически на следующем опыте.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр.

Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра.

Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

  • Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.
  • Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
  • Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
  • Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.
  • Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.

Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

Материал Удельное сопротивление,  Ом*мм2/м
 Серебро 0,016
 Медь 0,0175 
 Алюминий 0,0295 
 Железо 0,09-0,11
 Сталь 0,125-0,146
 Свинец 0,218-0,222
 Константан 0,4-0,51
 Манганин 0,4-0,52
 Никелин 0,43
 Вольфрам 0,503
 Нихром 1,02-1,12
 Фехраль 1,2
 Уголь 10-60

Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.

Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина.

Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2).

Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника

Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.

Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..

Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.

Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.

Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.

Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой

Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:

 электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..

Математически эта зависимость выражается следующей формулой:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  1. где R—сопротивление проводника в Ом;
  2. ρ — удельное сопротивление материала в Ом*мм2/м;
  3. l — длина проводника в м;
  4. S—площадь поперечного сечения проводника в мм2.
  5. Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  • где π—постоянная величина, равная 3,14;
  • d—диаметр проводника.
  • Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
  • Так, например, длина проводника определяется по формуле:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти  материал, обладающий таким удельным сопротивлением.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/zavisimost-elektricheskogo-soprotivleniia-ot-secheniia-dliny-i-materiala-provodnika.html

Формула для расчета удельного электрического сопротивления

1001student.ru > Физика > Формула для расчета удельного электрического сопротивления

При точном расчете электрических цепей используется формула удельного электрического сопротивления. Она показывает зависимость проводимости материала от его длины, площади сечения и температуры.

Специалисты рекомендуют перед практикой ознакомиться с теорией, которая позволит не только понять все процессы, происходящие в проводниках при протекании электрического тока, но и правильно решать задачи по алгоритму.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Электрическая проводимость

Из курса физики известно, что электрическая проводимость зависит не только от вещества, но и от длины, температуры, площади сечения и удельного сопротивления, формула которого описывает эту зависимость величин. Однако перед расчетами необходимо подробно рассмотреть все компоненты соотношения.

Проводник состоит из кристаллической решетки и свободных электронов, которые под воздействием электромагнитного поля движутся упорядочено, поскольку сила электрического тока имеет направление. Это значит, что она является векторной величиной.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Свободные частицы не всегда движутся строго по траектории. Иногда они взаимодействуют с узлами кристаллической решетки. При этом происходит выделение тепловой энергии, при котором проводник нагревается.

Скорость перемещения свободных электронов через него замедляется при столкновении, а затем снова возобновляется, поскольку действие электромагнитного поля не прекращается.

Процесс взаимодействия электронов с узлами кристаллической решетки называется электрическим сопротивлением R.

Классификация материалов

Величина, обратная R, является электрической проводимостью (G). Она связана следующим соотношением: G = 1 / R. Материалы по типу проводимости классифицируются следующим образом:

  • хорошо проводящие электрический ток (проводники);
  • проводящие электричество при определенных условиях (полупроводники);
  • неспособные к передаче электричества (изоляторы).

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

К первой группе проводимости относятся металлы (медь, никелин, золото, сталь и т. д.), газы (кроме инертных) и электролиты. К последним принадлежит любая жидкость, проводящая ток.

К полупроводникам относятся кремний (Si) и германий (Ge). Изоляторы также называют диэлектриками.

Они вообще не могут проводить электричество, и эта особенность применяется при изготовлении различного инструмента, корпусов приборов и т. д.

На проводимость влияет количество свободных электронов, зависящих от электронной конфигурации строения атома вещества. Однако они способны проводить ток при любых условиях, поскольку свободные носители заряда присутствуют всегда.

У второй группы веществ (полупроводников) количество свободных элементарных частиц зависит от внешних факторов (температуры, освещенности и т. д.). Если последних нет, то проводник становится диэлектриком.

У изоляторов частиц, переносящих заряд, вообще нет.

Обозначение и единица измерения

Электрическое сопротивление обозначается буквой R, единица измерения — Ом. Но могут применяться на практике и производные величины, в которых оно измеряется следующим образом:

  • 1 кОм = 103 Ом;
  • 1 МОм = 103 кОм = 106 Ом.

При расчетах нужно единицы измерения переводить в Ом, но допускается в некоторых случаях этого не делать, например, при последовательном соединении резисторов 1 кОм и 3 кОм, чтобы определить общее сопротивление, то есть R = 1 + 3 = 4 (кОм). Величину R получают такими методами:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  • расчётным;
  • измерением при помощи прибора.

В первом случае за базовое соотношение нужно взять закон Ома для участка цепи. Необходимо измерить при помощи вольтметра и амперметра величину тока (I) и напряжения (U).

Далее нужно подставить в формулу их значения и выполнить вычисления: R = U / I. Кроме того, можно обойтись без приборов, выполнив замер длины проводника, и найти площадь поперечного сечения.

После этого необходимо подставить результат в формулу с учетом удельного сопротивления материала.

Если есть под рукой специальный прибор, который называется омметром, то достаточно измерить величину R, а затем использовать ее для дальнейших расчетов. Чтобы измерения были точными, необходимо выполнить их несколько раз, а затем найти среднее значение.

Например, при выполнении измерений получены следующие результаты: первое значение — 3 Ом, второе — 2 Ом, третье — 4 Ом, четвертое — 3 Ом и пятое — 3 Ом.

В этом случае нахождение средней величины происходит таким образом: R = (3 + 2 + 4 + 3 + 3) / 5 = 15 / 5 = 3 (Ом).

Зависимость от физических величин

Чтобы узнать, от каких величин зависит R, нужно обратить внимание на следующую формулу, позволяющую рассчитать его: R = p * L / S, где p — удельное сопротивление (таблица значений берется из справочников по физике), L — длина проводника и S — площадь поперечного сечения. Кроме того, величина p зависит также от температуры.

Читайте также:  Образец согласия на подключение к газопроводу

Геометрические параметры

Длина и площадь поперечного сечения называются геометрическими параметрами проводника. Первая измеряется при помощи различных измерительных приборов (линейки и рулетки). Вторую можно посчитать, используя формулы. Для этого нужно знать основные соотношения, по которым рассчитывается площадь. Основные формы проводников для определения S:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  1. Квадрат со стороной t: S = t2.
  2. Прямоугольник со сторонами t и u: S = t * u.
  3. Окружность с радиусом r и диаметром d: S = Pi * r2 = Pi * d2 / 4, где Pi = 3,1416.

Поперечное сечение — перпендикулярный срез, при котором образуется плоская фигура. Например, для проволоки круглой формы нужно рассчитывать S для окружности.

Удельное сопротивление и температура

Значение p является табличным при температуре, равной 20 градусам по Цельсию. Физический смысл: удельным сопротивлением (p) проводника называется величина, которая прямо пропорциональна произведению сопротивления проводника в 1 Ом и площади сечения в 1 м2, а также обратно пропорциональна его длине, равной 1 м. Математическая запись имеет такой вид: p = (R * S) / L.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

Но p зависит также от температуры. Убедиться в этом поможет простой опыт. Для его проведения нужно собрать электрическую цепь, состоящую из источника питания (аккумулятора), выключателя, лампы накаливания и спирали из нихрома. Все компоненты схемы соединяются последовательно медными проводами. Далее следует включить питание при помощи выключателя.

Лампа засветится, но через некоторое время ее яркость будет уменьшаться. Это свидетельствует об увеличении электрического сопротивления с ростом температуры проводника (спирали). При выполнении анализа можно сделать вывод, что только p зависит от температуры, а не длина или сечение.

Формула зависимости имеет следующий вид: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура проводника и a — температурный коэффициент. Зависимость p от температуры описывается следующим соотношением: p = (1 + a * t) * po, где po — табличное значение, взятое из справочника.

Пример решения задачи

Необходимо найти силу тока (I) в цепи, состоящей из источника питания (36 В постоянного тока), выключателя, нихромового проводника, длина которого составляет 5 м и d = 2 мм.

Следует отметить, что удельное сопротивление нагревательного элемента составляет 1,167 (Ом * мм2) / м, а его рабочая температура — 1100 градусов по Цельсию. Кроме того, требуется сравнить токи при 20 (p = 1,1) и 1100 градусах.

Решается задача по такому алгоритму:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  1. Расчет сечения: S = Pi * d2 / 4 = 3,1416 * 4 / 4 = 3,1416 (мм2).
  2. R при 20 градусах: R1 = p * L / S = 1,1 * 5 / 3,1416 = 1,75 (Ом).
  3. Ток, протекающий в цепи до нагревания (закон Ома): I1 = 36 / 1,75 = 20,57 (А).
  4. Вычислить величину R2 для нагретого элемента: R2 = p * L / S = 1,167 * 5 / 3,1416 = 1,86 (Ом).
  5. По закону Ома для участка цепи при t = 1100: I2 = 36 / 1,86 = 19,4 (А).

Следует обратить внимание на изменение величины сопротивления при росте температуры, а также на уменьшение тока, который протекает в цепи.

Таким образом, удельное сопротивление проводника позволяет вычислить величину электрической проводимости без измерения при помощи вольтметра и амперметра.

Источник: https://1001student.ru/fizika/formula-dlya-rascheta-udelnogo-elektricheskogo-soprotivleniya.html

Измерение сопротивлений и определение удельных сопротивлений проводников

Цель работы:В учебных целях определить материал проводника путем измерения его сопротивления и вычисления удельного сопротивления

Общие сведения:

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.

В своем движении свободные электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Таким образом, электроны, проходя по проводнику, встречают сопротивление своему движению.

При прохождении электрического тока через проводник последний нагревается.

Электрическим сопротивлением проводника обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление. Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному.

Это показывает, что сопротивление проводника зависит от материала самого проводника. Температура проводника тоже оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, константан, никелин и др.

) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от длины проводника, поперечного сечения проводника, материала проводника, температуры проводника.

При сравнении сопротивлений проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Сопротивление (в омах) проводника длиной 1 м, сечением 1 мм2 называется удельным сопротивлением и обозначается греческой буквой ? (ро).

Удельное сопротивление проводника можно определить по формуле:

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения

  • где R – сопротивление проводника измеренное при температуре 200С, Ом;
  • S- постоянное поперечное сечение проводника, мм2;
  • l- длина в м.
  • Вместо единицы Ом·мм2/м предпочтительно применять равную ей по размеру единицу СИ мкОм•м. Связь между названными единицами удельного сопротивления:
  • 1 Ом•м=106 мкОм·м=106 Ом•мм2/м
  • В качестве основных проводниковых материалов применяют:
  • 1) материалы высокой проводимости, используемые для изготовления всевозможных обмоток электрических машин, аппаратов и приборов и передачи электрической энергии; от этих материалов требуется, возможно, меньшая величина электрического сопротивления;
  • 2) сплавы высокого сопротивления, используемые для изготовления всевозможных сопротивлений, нагревательных приборов, термопар и др.

К материалам высокой проводимости предъявляют следующие требования: возможно большая проводимость (возможно меньшее удельное сопротивление); возможно меньший температурный коэффициент удельного сопротивления; достаточно высокие механическая прочность, в частности предел прочности при растяжении и удлинение при разрыве; способность легко обрабатываться прокаткой и волочением для изготовления проводов; способность хорошо свариваться и спаиваться, создавая при этом надежные соединения с малым электрическим сопротивлением; достаточная коррозионная устойчивость. Для разных случаев применения эти требования в той или иной степени варьируют. Например, для большинства обмоток электрических машин, аппаратов и проводов выгодней иметь, возможно, меньшее удельное сопротивление, даже если за счет его снижения несколько снизится и предел прочности при растяжении; для троллейных (контактных) воздушных проводов, работающих на разрыв и на истирание, особое значение приобретают повышенные предел прочности при растяжении, твердость, стойкость против истирания.

Значения удельного сопротивления ? некоторых металлов приведенные в таблице 3.1.

Таблица 3.1 – Удельное сопротивление некоторых металлов

Металл Удельное сопротивлениемкОм•м ТК? ?104 К-1
Олово 0,076
Кадмий 0,210
Свинец 0,059
Цинк 0,045
Алюминий 0,5
Серебро 0,024
Медь 0,04
Железо 0,110
Никель 0,062

Наименьшим удельным сопротивлением обладает чистый металл. Любые примеси, металлические и неметаллические, повышают удельное сопротивление.

Даже примесь металла, имеющего меньшее удельное сопротивление, чем данный повышает его сопротивление, если металлы образуют друг с другом твердый раствор.

Это объясняется искажением кристаллической решетки основного металла даже небольшим количеством примеси.

Перечень аппаратуры

Статьи к прочтению:

  • Измеритель параметров r,l,c
  • Изображение алгоритма в виде блок-схемы

Определение удельного сопротивления

Источник: http://csaa.ru/izmerenie-soprotivlenij-i-opredelenie-udelnyh/

Электрическое сопротивление и проводимость

26 марта 2013. Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.

В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении.

В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Измерение удельного сопротивления проводника: от чего зависит и единицы измерения
Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б.

В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании.

Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

  • Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).
  • В таблице 1 даны удельные сопротивления некоторых проводников.
  • Таблица 1
  • Удельные сопротивления различных проводников
Читайте также:  Линии электропередач: воздушные, высоковольтные и кабельные, определение и расшифровка
Материал проводника Удельное сопротивление ρ в
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

  1. Сопротивление проводника можно определить по формуле:
  2. где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.

Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.

Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом.

Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры.

Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

  • Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
  • Таблица 2
  • Значения температурного коэффициента для некоторых металлов
Металл α Металл α
Серебро Медь Железо ВольфрамПлатина 0,0035 0,0040 0,0066 0,00450,0032 Ртуть Никелин Константан НихромМанганин 0,0090 0,0003 0,000005 0,000160,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (t – t0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник: https://www.electromechanics.ru/electrical-engineering/482-resistance-resistivity-and-conductivity-of-conductors.html

Удельное сопротивление и электропроводимость: формулы и объяснение

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками.

 Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д.

Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление.

С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A.

Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R.

Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника.

 Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Читайте также:  Подключение дифавтомата - советы эксперта

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него.

 Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2, если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8  Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2, что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧.

 Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом).

 Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

Проводник Удельное сопротивлениеρ Температурный коэффициент α
Алюминий 0,028 4,2
Бронза 0,095 — 0,1
Висмут 1,2
Вольфрам 0,05 5
Железо 0,1 6
Золото 0,023 4
Иридий 0,0474
Константан 0,5 0,05
Латунь 0,025 — 0,108 0,1-0,4
Магний 0,045 3,9
Манганин 0,43 — 0,51 0,01
Медь 0,0175 4,3
Молибден 0,059
Нейзильбер 0,2 0,25
Натрий 0,047
Никелин 0,42 0,1
Никель 0,087 6,5
Нихром 1,05 — 1,4 0,1
Олово 0,12 4,4
Платина 0.107 3,9
Ртуть 0,94 1,0
Свинец 0,22 3,7
Серебро 0,015 4,1
Сталь 0,103 — 0,137 1-4
Титан 0,6
Фехраль 1,15 — 1,35 0,1
Хромаль 1,3 — 1,5
Цинк 0,054 4,2
Чугун 0,5-1,0 1,0

Где: удельное сопротивление ρ измеряется в Ом*мм2/м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3*C-1(или K -1) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление.

Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A.

Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления.

 Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника).

 Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Источник: https://meanders.ru/chto-takoe-udelnoe-soprotivlenie-i-jelektroprovodnost-formula.shtml

Удельное сопротивление — это… Что такое Удельное сопротивление?

  • УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — электрическое, физическая величина , равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м2).. r = R S/l. В Си единицей… …   Энциклопедический словарь
  • УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — (обозначение r), электрическое свойство материалов. Его величина вычисляется по формуле r=AR/l, где А плотность поперечного сечения ПРОВОДНИКА, l его длина, a R его СОПРОТИВЛЕНИЕ в ОМАХ. С повышением температуры ПРОВОДНИКА его удельное… …   Научно-технический энциклопедический словарь
  • УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — сопротивление движению поезда, выраженное в килограммах на 1 т веса поезда. Различают след. виды сопротивления: основное сопротивление движению вагонов, локомотивов и пр. на прямом и горизонтальном пути; сопротивление при преодолении подъемов;… …   Технический железнодорожный словарь
  • удельное сопротивление — Величина, характеризующая электропроводность вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на плотность электрического тока проводимости равно напряженности электрического поля. [ГОСТ Р… …   Справочник технического переводчика
  • УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — сопротивление, оказываемое электрическому току проводником длиной в 1 м и поперечным сечением в 1 мм2 при t = 20° С. Выражается в омах и характеризует материал, из которого сделан проводник. Самойлов К. И. Морской словарь. М. Л.: Государственное… …   Морской словарь
  • УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — электрическое, физ. величина r, равная электрическому сопротивлению цилиндрич. проводника единичной длины и единичной площади поперечного сечения. Обычно У. с. выражают в Ом•см или Ом•м. Физический энциклопедический словарь. М.: Советская… …   Физическая энциклопедия
  • удельное сопротивление — объемное удельное электрическое сопротивление; объемное удельное сопротивление; удельное сопротивление Величина, обратная удельной проводимости …   Политехнический терминологический толковый словарь
  • удельное сопротивление — savitoji elektrinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas iš formulės E = ρJ; čia E – elektrinio lauko stiprio vektorius, J – elektros srovės tankio vektorius, ρ – savitoji elektrinė varža.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas
  • удельное сопротивление — savitoji elektrinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, skaitine verte lygus kubo pavidalo laidininko, kurio briaunos ilgis 1 m, varžai. atitikmenys: angl. electric resistivity; resistivity; specific resistance …   Penkiakalbis aiškinamasis metrologijos terminų žodynas
  • удельное сопротивление — savitoji varža statusas T sritis fizika atitikmenys: angl. resistivity; specific resistance vok. spezifischer Widerstand, m rus. удельное сопротивление, n pranc. résistance spécifique, f; résistivité, f …   Fizikos terminų žodynas

Источник: https://dic.academic.ru/dic.nsf/ruwiki/1153326

Ссылка на основную публикацию
Adblock
detector