Схема и принцип работы контроллера заряда солнечной батареи

Пост опубликован: 8 мая, 2017

Солнечный контроллер заряда – это электронный прибор, отвечающий за заряд аккумуляторной батареи. Устройства различаются по конструкции, мощности, номинальному напряжению, силе тока заряда и принципу действия.

Схема и принцип работы контроллера заряда солнечной батареи

Что это такое

  • Контроллер заряда является одним из электронных устройств в схеме управления солнечных электрических станций.
  • Устройство осуществляет контроль за параметрами заряда аккумуляторной батареи и регулирует процесс его выполнения.
  • Устройство выполняет следующие функции:Схема и принцип работы контроллера заряда солнечной батареи
  • Отключает аккумуляторную батарею при достижении ею полного заряда;
  • Отключает потребителей при снижении заряда до минимальных значений;
  • Осуществляет повторное подключение потребителей в случае восстановления заряда;
  • Контролирует ход процесса зарядки;
  • Подключает, в автоматическом режиме, источники энергии для выполнения заряда накопителями энергии.
  1. Использование контроллеров позволяет продлить срок службы аккумуляторных батарей и автоматизировать работу электрических станций.
  2. Для автоматической и безопасной работы аппараты оснащены различными режимами, при которых способны работать в соответствии с заданными параметрами, а также оснащены средствами и элементами защиты.
  3. К таким элементам относятся:
  1. От неправильной полярности на источнике тока и на нагрузке;
  2. От коротких замыканий на входящих и исходящих линиях;
  3. От различных видов перегрева и высоких напряжений.

Виды контроллеров

Существует три принципиально разных по принципу работу, но одинаковых по назначению

Схема и принцип работы контроллера заряда солнечной батареиPWM контроллер

видов контроллеров заряда аккумуляторных батарей, это:

  1. On/Off контроллеры. Устройства данного вида применяются редко. Малое распространение данного вида устройств обусловлено тем, что при их использовании происходит неполный заряд АКБ, что в свою очередь отрицательно отражается на их состоянии и может привести к их полному выходу из строя.
  2. ШИМ (PWM) – контроллер. Аппараты данного вида после заряда АКБ не отключают солнечные батареи, это позволяет полностью зарядить АКБ. Устройства данного вида используются в установках мощностью до 2,0 кВт.
  3. Схема и принцип работы контроллера заряда солнечной батареиМРРТ контроллер

    МРРТ – контроллер. Это наиболее сложные устройства. Данный аппараты эффективны в работе, обладают большим набором настроек и элементам защиты. Использование устройств данного вида позволяет сократить сроки окупаемости солнечных электрических станций.

Принцип действия

Для разных видов контроллеров, приведенных выше, принцип действия следующий:

  • Для «On/Off» вида устройств – работа заключается в следующем: при достижении максимального Схема и принцип работы контроллера заряда солнечной батареинастроенного значения напряжения на клеммах АКБ, устройство отсоединяет солнечные панели, зарядка АКБ приостанавливается.
  • Для «ШИМ (PWM)» вида устройств – принцип действия основан на использовании широтно-импульсной модуляции.
  • Для «МРРТ» вида устройств – принцип действия основан на управлении пиками, выходящими на максимальный энергетический уровень.

Инструкция по применению

Прежде чем изучить инструкцию по применению контроллера, необходимо запомнить три параметра, которые необходимо соблюдать при эксплуатации данных электронных устройств, это:

  1. Входное напряжение устройства должно превышать на 15 – 20% напряжение «холостого хода» солнечной панели.
  2. Для ШИМ (PWM) аппаратов — номинальный ток должен превышать на 10% ток короткого замыкания в Схема и принцип работы контроллера заряда солнечной батареилиниях подключения источников энергии.
  3. MPPT — контроллер должен соответствовать мощности системы, плюс 20% от этого значения.

Для успешной эксплуатации прибора необходимо изучить инструкцию по его эксплуатации, которая всегда прилагается к подобным электронным устройствам.

Инструкция информирует потребителя о следующем:

  • Требования техники безопасности – в данном разделе определяются условия при которых эксплуатация прибора не приведет к поражению потребителя электрическим током и прочим негативным последствиям.

Вот основные из них:

  • Перед установкой и настройкой контроллера, необходимо отключить солнечные панели и аккумуляторные батареи от прибора посредством коммутационных аппаратов;
  • Исключить попадание воды на электронный прибор;
  • Контактные соединения должны быть плотно затянуты, дабы избежать их нагрева в процессе работы.
  • Технические характеристики устройства – этот раздел позволяет выбрать прибор по предъявляемым к нему требованиям в конкретной схеме и месте установки.

Как правило, это:

  • Виды регулировок и настроек прибора;Схема и принцип работы контроллера заряда солнечной батареи
  • Режимы работы прибора;
  • Описываются элементы управления и индикации устройства.
  • Способы и место монтажа – каждый контроллер монтируется в соответствии с требованиями завода – изготовителя, что позволяет эксплуатировать устройство продолжительное время и с гарантированным качеством.

Дается информация по:

  • Месту и пространственному размещению устройства;
  • Указываются габаритные размеры до инженерных сетей и устройств, а также элементов строительных конструкций, по отношению к монтируемому прибору;
  • Даются установочные размеры для мест крепления устройства.
  • Способы включения в систему – данный раздел объясняет потребителю к какой клемме и как, следует выполнить подключение, для запуска в работу электронного прибора.

Сообщается:

  • В какой последовательности следует выполнять включение прибора в рабочую схему;
  • Указываются недопустимые действия и мероприятия при включении прибора.
  • Настройка прибора – важная операция, от которой зависит работа всей схемы солнечной электростанции, ее надежность.

В данном разделе сообщается о том как:

  • Какие индикаторы и как сигнализируют о режиме работы прибора и его неисправностях;
  • Дается информация как настроить нужный режим работы устройства по времени суток, режимам нагрузок и иным параметрам.
  • Виды защиты – в этом разделе сообщается от каких аварийных режимов защищено устройство.

Как вариант это может быть:

  • Защита от короткого замыкания в линии соединяющей прибор с солнечной панелью;
  • Защита от перегрузки;
  • Защита от короткого замыкания в линии соединяющей прибор с аккумуляторной батареей;
  • Неправильное подключение солнечных панелей (обратная полярность);
  • Неправильное подключение аккумуляторной батареи (обратная полярность);
  • Защита от перегрева устройства;
  • Защита от высокого напряжения вызванного грозой или иными атмосферными явлениями.
  • Ошибки и неисправности – этот раздел разъясняет как действовать, если по какой-то причине прибор работает неправильно, или вообще не работает.

Рассматривается связь: неисправность – возможная причина неисправности – способ устранения неисправности.

  • Поверка и обслуживание – в этом разделе дается информация какие профилактические мероприятия необходимо выполнять, для обеспечения безаварийной работы устройства.
  • Гарантийные обязательства – указывается срок, в течение которого прибор может быть отремонтирован за счет производителя устройства, при условии правильной эксплуатации, в соответствии с инструкцией по эксплуатации.

Как сделать своими руками

Схема и принцип работы контроллера заряда солнечной батареи

  • В основу работы подобного устройства заложен принцип – когда напряжение на аккумуляторной батарее достигает установленного уровня, зарядка прекращается, и при снижении напряжения на клеммах аккумуляторов – зарядка возобновляется.
  • Подобный прибор может быть собран по следующей схеме:
  • Схема и принцип работы контроллера заряда солнечной батареи
  • Контроллер заряда собранный по данной схеме будет обладать следующими характеристиками:
  • Напряжение заряда аккумулятора регулируется, номинальная величина – 13,8 В;
  • Отключение потребителя настраивается, номинальное значение – 11 В;
  • Включение нагрузки при напряжении на аккумуляторе в 12,5 В.

Электронные компоненты схемы могут быть заменены на аналоги, без изменения физических свойств.

Схема и принцип работы контроллера заряда солнечной батареи — рассматриваем во всех подробностях

Основной сложностью использования солнечной энергии в быту является ее накопление.

Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое.

Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Необходимость

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства.  Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Функции контроллеров

Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:

Читайте также:  Бойлер косвенного нагрева: устройство, принцип работы, схемы подключения

Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора.

Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости.

Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.

Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти».

Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже.

Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.

На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа.

Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода.

При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде.

В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.

Как работает контроллер зарядки аккумулятора?

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Схема и принцип работы контроллера заряда солнечной батареи

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору.

Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В.

Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми.

При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление.

Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Схема и принцип работы контроллера заряда солнечной батареи

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

  • ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.Схема и принцип работы контроллера заряда солнечной батареи
    В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками.
  • ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
  • MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.

Как выбрать контроллер для солнечной батареи?

Это очень важное устройство, которое достаточно сложно правильно подобрать среди великого многообразия. Чтобы взять то что действительно нужно придерживайтесь следующих данных:

  • Мощность батареи. На выходе общая мощность не должна быть больше показателя тока.
  • Уровень входящего напряжения. Он должен быть больше на 20% чем U АКБ, которое производится преобразователями света в ток.

Контроллер заряда солнечной батареи на данный момент выпускается всех мастей. Он может обладать защитой от плохих погодных условий, больших нагрузок, замыканий, перегреваний и даже от неправильного включения. Например, такое может случится, когда путаете полярность. В результате брать нужно такое устройство, которое будет иметь несколько уровней защиты.

Популярные компании производители

  1. Автоматика-с.
  2. Эмикон.
  3. Овен.
  4. SLC 500
  5. Allen-Bradleo.
  6. Micro Logix

Данные изготовители занимаются производством подобных приспособлений уже много лет.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры.

В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2.

Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Схема и принцип работы контроллера заряда солнечной батареи

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.
Читайте также:  Ремонт дренажного насоса своими руками: пошаговый инструктаж

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен.

Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели.

На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

Контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником.

При стоимости готового изделия 20$ — такая перспектива уже не кажется раумной. Собрать качественный MPPT — контроллер в домашних условиях — вообще занятие невозможное, нужно и оборудование и соответствующий софт.

Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

Схема и принцип работы контроллера заряда солнечной батареи Ветряк для частного дома — игрушка или реальная альтернатива Схема и принцип работы контроллера заряда солнечной батареи Как выбрать солнечную панель — обзор важных параметров Схема и принцип работы контроллера заряда солнечной батареи Виды садовых светильников и фонарей на солнечных батареях, как и где использовать. Схема и принцип работы контроллера заряда солнечной батареи Выгодно ли покупать комплектом солнечные батареи для дачи

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

Схема контроллера заряда аккумулятора от солнечной батареи: как работает устройство

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства  в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей. 

Схема и принцип работы контроллера заряда солнечной батареи

Необходимость

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства.  Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Схема и принцип работы контроллера заряда солнечной батареи

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору.

Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В.

Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

On/Off

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

Схема и принцип работы контроллера заряда солнечной батареи

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Схема и принцип работы контроллера заряда солнечной батареи

МРРТ

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора.

Он непрерывно следит за током и напряжением в системе.

Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Схема и принцип работы контроллера заряда солнечной батареи

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Схема и принцип работы контроллера заряда солнечной батареи

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Схема и принцип работы контроллера заряда солнечной батареи

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.  

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

(3

Солнечные контроллеры — типы и назначение

Любая автономная система электроснабжения, содержащая в своем составе аккумуляторные батареи, должна содержать в себе средства контроля заряда и разряда аккумуляторов.

Контроллеры заряда используются в автономных фотоэлектрических системах для правильного заряда аккумуляторных батарей (АБ), для защиты перезаряда (когда батарея заряжена, а солнечная панель вырабатывает избыток электричества).

Некоторые модели имеют также разъемы для подключения нагрузки постоянного тока и защищают АБ от глубокого разряда.

Схема и принцип работы контроллера заряда солнечной батареи

Использование контроллеров заряда настоятельно рекомендуется. Он обеспечивает трехстадийный (обычно) заряд аккумулятора. Стадии заряда свинцово-кислотных аккумуляторов подробно расписаны в статье про контроллеры с ШИМ.

Особенно это относится к системам со свинцово-кислотными аккумуляторами. Дело в том, что эти аккумуляторы боятся как глубокого разряда, так и перезаряда.

В случае переразряда, резко сокращается срок службы аккумуляторной батареи или даже она может выйти из строя.

Читайте также:  Как почистить посудомоечную машину в домашних условиях: советы по чистке

Если же аккумулятор заряжен, но через него продолжает протекать зарядный ток, то это может привести в закипанию электролита и бурному газовыделению (в случае с заливными батареями) или к вспучиванию и даже взрыву герметичных аккумуляторных батарей.

Щелочные батареи хотя и не боятся глубокого разряда, но также не терпят перезаряда. Для литиевых аккумуляторов кроме защит от перезаряда и переразряда в обязательном порядке необходимо ставить систему балансировки напряжения между элементами последовательной цепочки.

Схема и принцип работы контроллера заряда солнечной батареиСхема подключения солнечного контроллера заряда в фотоэлектрической системе

Поэтому в систему автономного электроснабжения вводятся устройства, которые отключают нагрузку от аккумуляторных батарей если они недопустимо разряжены, а также отключают источник энергии (фотоэлектрическую батарею, ветротурбину и т.п.) если аккумуляторы заряжены.

Контроллер разряда отключает нагрузку, когда аккумулятор недопустимо разряжен. Обычно фотоэлектрические солнечные комплекты снабжаются контроллером заряда-разряда. Никогда на подключайте нагрузку напрямую к АБ минуя контроллер заряда для того, чтобы получить «последнюю порцию» энергии от батареи. Этим вы можете вывести вашу АБ из стоя.

Напряжения отключения нагрузки для свинцово-кислотных батарей обычно лежат в пределах от 10,5 до 11,5 В. Для 12 В аккумуляторных батарей при более чем 10-часовом разряде это означает использование от 100% до 20% номинальной емкости. При более быстрых разрядах количество отбираемой емкости уменьшается.

Напряжение отключения источника энергии обычно равно 14-14,3 В. Это предотвращает газовыделение при заряде аккумуляторных батарей. Существуют контроллеры заряда, в которых предусмотрен режим «выравнивания». Такой режим необходим периодически для заливных батарей, напряжение заряда при этом должно быть около 15 В. Для герметичных батарей такой режим запрещен.

Часто напряжения отключения можно регулировать при изготовлении или настройке. Но, в основном, контроллеры заряда продаются с уже установленными «типовыми» уровнями напряжений отключения.

Какие бывают солнечные контроллеры заряда для аккумуляторов?

Современные контроллеры заряда аккумуляторов от солнечных батарей подразделяются на 2 большие группы — PWM (ШИМ) и MPPT (со слежением за ТММ).

Для заряда АБ от ШИМ контроллера нужно, чтобы напряжение солнечной батареи соответствовало напряжению аккумулятора. Так, для заряда 12В аккумулятора нужна солнечная батарея с 36 солнечными элементами, соединенными последовательно (для увеличения мощности таких цепочек параллельно может быть несколько). Подробно о соответствии напряжения АБ и количества солнечных элементов в панели расписано в статье Как выбрать солнечную батарею и не пожалеть об этом?

Для заряда АБ через MPPT контроллер напряжение солнечной батареи просто должно быть выше напряжения аккумулятора.

Также, нужно следить, чтобы напряжение холостого хода солнечной батареи не превышало максимально допустимое напряжение солнечного контроллера.

  Про порядок выбора мощности и тока солнечного контроллера подробно описано в разделе «Вопросы и ответы — Контроллеры-Как правильно выбрать контроллер заряда для солнечных батарей?»

Солнечные контроллеры заряда могут быть встроены в инверторы или блоки бесперебойного питания. В ББП обычно встраиваются и зарядные устройства. См., например, ББП Prosolar Combi и инверторы Studer AJ-S

Мы не рекомендуем экономить на хорошем контроллере заряда для солнечной энергосистемы. Типичное распределение стоимости элементов энергосистемы следующее:

Как видим, стоимость солнечного контроллера составляет малую часть от общей стоимости энергосистемы. Однако, технологии заряда очень сильно влияют как на эффективность использования солнечной энергии, так и на срок службы одной из самых дорогостоящих частей системы автономного электроснабжения — аккумуляторных батарей.

Контроллеры заряда отличаются по

  1. алгоритму заряда на последней стадии заряда при достижении напряжения заряженного аккумулятора,
  2. по способам регулирования тока (шунтовые и последовательные),
  3. по возможности слежения за точкой максимальной мощности (СТММ) солнечного модуля.

Методы регулирования, применяемые в солнечных контроллерах

Простейшие контроллеры просто отключают источник энергии (солнечную батарею) при достижении напряжения на аккумуляторной батарее примерно 14,4 В (для АБ номинальным напряжением 12В).

При снижении напряжения на АБ до примерно 12,5-13 В снова подключается солнечная батарея и заряд возобновляется. При этом максимальный уровень заряженности АБ при этом составляет 60-70%.

При регулярном недозаряде происходит сульфатация пластин и резкое сокращение срока службы АБ.

Такие контроллеры уже серийно практически не выпускаются, и с основном с таким типом контроллеров можно встретиться у различных «самоделкиных», которые или не имеют возможности купить современный контроллер, или пытаются «сэкономить» (экономии, в конечном счете, никакой не будет — см. про преимущества контроллеров с ШИМ и CTMM)

Более продвинутые контроллеры на завершающей стадии заряда используют так называемую широтно-импульсную модуляцию (ШИМ) тока заряда — по английски PWM (pulse-width modulation). ШИМ контроллеры обеспечивают 100% заряд аккумуляторов. Более подробно о контроллерах с ШИМ здесь…

Наиболее сложные контроллеры умеют следить за точкой максимальной мощности фотоэлектрических батарей. Такие контроллеры называются MPPT контроллерами (Maximum Power Point Tracking — Слежение за Точкой Максимальной Мощности). Причем MPPT контроллеры также используют ШИМ для регулирования тока заряда аккумуляторов.

ШИМ контроллеры также делятся на шунтовые и последовательные.

В шунтовых контроллерах солнечная батарея замыкается накоротко; таким образом, ток от солнечной батареи течет через шунт и не попадает в аккумулятор. Такой принцип работы не позволяет подключать ко входу контроллера другие источники энергии, кроме фотоэлектрических батарей.

В последовательных контроллерах источник энергии отключается от аккумулятора и нагрузки. Напряжение на источнике энергии поднимается до значения напряжения холостого хода.

Каждый тип регулирования имеет свои преимущества и недостатки.

Последовательное
все контроллеры EPSolar, SRNE
Steca (кроме PR и Tarom)
MorningStar
RE SunStar
1. Можно использовать различные источники
2. Меньший нагрев при регулировании
3. Отключение источника при полном заряде
1. Потери в последовательных ключах
2. Большие скачки тока при регулировании приводят к высоким электромагнитным помехам

Последовательное регулирование тока заряда

Шунтовое
Steca PR и Tarom
1. Низкий уровень электромагнитных помех
2. Низкое падение напряжения в ключах
3. Малые потери мощности СБ за счет прямого соединения СБ с АБ
1, Больший нагрев во время регулирования
2. Можно использовать только с СБ

Шунтовое регулирование тока заряда

MPPTEPSolar Tracer, SRNE MR,
Steca Solarx MPPT
Proslar SunStar MPPT
Outback FlexMax
Morninstar Tristar MPPT
SE XW MPPT
Studer VarioTrack и VarioString
1. Разное напряжение на входе и выходе контроллера
2. Возможно подключение различных источников на вход
3. Гальваническая развязка входа и выхода
4. Большая выработка энергии за счет работы в ТММ модуля
1. Потери на преобразования
2. Более сложная технология
3. Более высокая цена

Топология MPPT контроллера

Вычисление степени заряженности аккумуляторной батареи

Контроллеры также отличаются по алгоритму регулирования. Большинство контроллеров обеспечивает регулирование по напряжениям, или по степени заряженности аккумулятора (SOC — state of charge).

SOC могут считать только продвинутые контроллеры.

Многие недорогие контроллеры, которые отображают степень заряженности АБ в %, на самом деле не могут вычислять SOC и дают примерную цифру в зависимости от напряжения на АБ и, в лучшем случае, скорости его изменения.

  • Считается, что регулирование по SOC обеспечивает лучшие режимы работы аккумуляторов и продлевает срок их службы.
  • По-настоящему SOC могут вычислять следующие модели контроллеров при условии, что контроллер учитывает весь ток заряда и разряда аккумулятора (может потребоваться измерительный шунт на аккумуляторе):
  • Полный список статей  на нашем сайте:
  • Дополнительная информация также содержится в разделе «Основы возобновляемой энергетики», подраздел Фотоэлектричество, а также в разделе «Библиотека«.
  • Настоятельно рекомендуем также ознакомиться с ответами на часто задаваемые вопросы по контроллерам заряда.
  • Эта статья прочитана 18163 раз(а)!

Продолжить чтение

  • Использование контроллеров с ШИМ
  • Контроллеры EP Solar / EPEver
Ссылка на основную публикацию
Adblock
detector