Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.

Для чего нужна пускорегулирующая аппаратура

Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключенияСхема, поясняющая устройство ЛДС

Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.

Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников.

Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться.

Само же УФ излучение практически полностью поглощается стеклом и люминофором.

Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Стартеры для запуска ДЛС

Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение.  Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.

Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

ЭмПРА для ЛДС мощностью 36 Вт

Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.

Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.

Схема подключения люминесцентной лампы

Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключенияСхема подключения одной люминесцентной лампы

Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет.

За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты.

За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.

Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.

Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует.

В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя.

Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком  велик.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключенияНаглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем

Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.

Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.

  • Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения
  • Схема подключения двух люминесцентных ламп к одному дросселю
  • Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.

Собирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.

Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.

Зачем нужен дроссель в схеме

В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.

Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключенияДроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом

Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим.

Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро.

Именно за счет такого постоянного перемагничивания ток ограничивается.

Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.

Преимущества и недостатки электромагнитного дросселя

Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:

  1. Относительно невысокую стоимость.
  2. Простоту конструкции.
  3. Долговечность.

Недостатков у этого прибора, увы, немного больше. Это:

  1. Большие массогабаритные показатели.
  2. Мерцание лампы с удвоенной частотой питающей сети.
  3. Гудение.
  4. Низкий КПД из-за большого индуктивного сопротивления.
  5. При отрицательных напряжениях может не запустить лампу.
  6. Долгий запуск (от 1 до 3 сек.).
  7. При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.

Можно ли обойтись без него

Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

ЭПРА для люминесцентных ламп

Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:

  1. Имеет небольшие массогабариты.
  2. Не гудит.
  3. Не вызывает мерцания лампы с частотой сети.
  4. Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
  5. Запускает ЛДС практически мгновенно.

Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.

Типовые неисправности — замыкание, перегрев, обрыв

А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:

  1. Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
  2. Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
  3. Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.

Как проверить электромагнитный дроссель

Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключенияСхема проверки дросселя

Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).

Итак, собираем схему, включаем. В результате видим:

  1. Лампа не горит. В балласте обрыв.
  2. Горит на полную яркость. Замыкание.
  3. Моргает или горит вполнакала. Балласт, возможно, исправен.

Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.

Возможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений.

Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».

Вот и подошла к концу беседа об электромагнитных дросселях.

Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.

Читайте также:  Как починить пылесос своими руками: основные типы поломок и их устранение

ПредыдущаяСледующая

Дроссели (ПРА) для люминесцентных ламп:устройство,принцип работы и ремонт

Люминесцентные лампы, которые являются представителями типа газоразрядных лам, невозможно зажечь как обычные лампы накаливания, просто подключив к ним напряжение питающей сети. Просто не произойдет ничего. Чтобы выполнить зажигание такой лампы необходима специальная схема или электронный пускорегулирующий аппарат.

В случае применения простейшей схемы для запуска тлеющего разряда в колбе газоразрядной лампы потребуется стартер и дроссель. Со стартером все понятно. Он требуется только для запуска, после чего он отключается. В работе всегда участвует дроссель. Его задача ограничивать ток, протекающий через лампы. Может показаться, что достаточно резистора.

Он и меньшие размеры имеет. Теоретически, в цепи на переменном токе можно ограничивать ток резистором, конденсатором, катушкой индуктивности. Но в отличие от резистора, она обладает реактивным сопротивлением. И это делает его наиболее уместным вариантом, для его использования в качестве балластного элемента.

В схеме он подключается последовательно с лампой.

Благодаря реактивному сопротивлению и выполняется защита от лавинообразного нарастания тока.

Устройство дросселя (ПРА)

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Внешний вид дросселя

На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла.

Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод — ограничитель). Его сопротивление по постоянному току порядка 60 Ом.

 При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание.

Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки. В простейшей схеме он выполняет функцию балласта.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Дроссель в разрезе

Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.

Принцип работы дросселя

Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.

Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.

При подаче питания на схему происходит следующее:

  1. Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
  2. В колбе стартера происходит ионизация газа, температура растет.
  3. Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
  4. Этого тока вполне достаточно для разогрева электродов лампы EL
  5. В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
  6. Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.

Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.

Классификация и разновидности дросселей

В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.

 Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному.

Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей.

Обычно применяется LC-фильтр.

Схема подключения дросселя для люминесцентных ламп

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Схема подключения дросселя для люминесцентной лампы

Это простейшая схема для одного источника света. В случае использования двух ламп можно ограничится одним дросселем, но в этом случае, он должен выдерживать суммарную мощность двух ламп.

Зачем нужен дроссель для люминесцентных ламп: устройство и схема подключения

Схема подключения дросселя для  двух люминесцентных ламп

В данной схеме конденсатор С1 желателен, но он не является обязательной частью схемы. Теоретически вместо стартеров можно поставить обычные кнопки без фиксации. После зажигания светильника эти кнопки необходимо отпустить.

Ремонт дросселя

Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом.

Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта.

Скорее всего он просто сгорел, так был скачок напряжения.

Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.

Выводы

Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.

Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.

В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом.

Читайте также:  Рейтинг сплит систем для квартиры: топ-15 лучших сплит систем и рекомендации по выбору

Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно.

Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы.

Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

  • А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.
  • При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.
  • Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют Фазную жилу питающего кабеля подсоединяют в дроссельСоединение второй лампы со вторым стартеромПодсоединение в цепь второй стороны лампыСоединение второй лампы с дросселемПо одному стартеру для каждой лампочкиУстановка пускателей в держателиДроссель один на две лампочкиПроверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно написано здесь.

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами.

Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы ртутной лампочки. Мельчайшие частицы в состоянии разлететься в радиусе трех метров.

Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и газоразрядных лампочек, с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

  1. Тонкости сборки схемы из двух ЛЛ с последовательным включением:
  2. Видеоролик о том, что такое дроссель и зачем он нужен:
  3. Проверка дросселя на предмет поломки:
  4. О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

Для чего люминесцентной лампе дроссель

Светодиодные лампы успешно вытесняют другие типы источников света, но люминесцентные приборы используются все еще достаточно широко. Поэтому будет совсем нелишним узнать, что такое дроссель и для чего он нужен люминесцентной лампе (ЛЛ).

Что такое люминесцентная лампа и как она работает

Для того, чтобы понять, для чего лампе дроссель, необходимо познакомиться с принципом ее работы. Конструктивно люминесцентная лампа представляет собой герметично запаянную трубку, внутренние стенки которой покрыты люминофором – составом, светящимся под воздействием ультрафиолетовых лучей.

Читайте также:  Светильники в ванную комнату на потолок: виды, размещение, нюансы монтажа

Сама трубка заполнена смесью инертных газов с небольшой добавкой ртути, а в концы ее впаяны электроды, представляющие собой спирали из тугоплавкого материала (обычно сплавы вольфрама).

Рисунок, поясняющий конструкцию и принцип работы люминесцентной лампы

При подаче на электроды напряжения, через трубку начинает течь ток. Электроны воздействуют на атомы ртути, заставляя последние излучать в ультрафиолетовом спектре.

Ультрафиолет в свою очередь воздействует люминофор, который тоже начинает излучать, но уже в видимом, привычным для наших глаз спектре. Сам же ультрафиолет поглощается частично люминофором, частично стеклом колбы.

В результате мы получаем источник белого спектра, свободный от ультрафиолета.

Знакомая всем компактная люминесцентная лампа – это все та же обычная трубчатая, просто трубка у нее свернута в спираль. Поскольку разряд в лампе тлеющий, все отлично работает и, в отличие от дуговых ламп, не вызывает локального перегрева стекла в местах изгиба.

Все эти КЛЛ – обычные люминесцентные лампы, только с изогнутой колбой

Для чего люминесцентной лампе пускорегулирующая аппаратура?

В теории все просто, но на практике много сложнее. Во-первых, через лампу необходимо ограничить ток. В противном случае тлеющий разряд перейдет в неуправляемый дуговой, поскольку сразу после появления тока сопротивление газового промежутка сильно падает из-за появившихся паров ртути. Произойдет короткое замыкание, и трубка выйдет из строя, а то и взорвется.

Во-вторых, при подаче рабочего напряжения на электроды, ток через лампу не потечет – в холодном приборе очень мало паров ртути – вся она конденсируется и оседает на стенках колбы в виде обычной металлической ртути. А инертный газ, как известно, имеет слишком большое сопротивление для обеспечения тлеющего разряда между относительно далеко расположенными электродами.

Для начала разряда или, как говорят, пуска лампы, необходимо либо подать на электроды повышенное напряжение, либо увеличить их эмиссию – способность испускать электроны. Если, к примеру, электроды подогреть, то хватит малейшего толчка, чтобы лампа запустилась. Именно поэтому электроды в ЛЛ выполнены в виде спиралей накаливания.

Электрод в люминесцентной лампе имеет вид спирали с двумя выводами – прямо лампа накаливания в миниатюреПри разогретых электродах высоковольтный разряд тоже нужен, но величина пускового напряжения существенно уменьшается. Это упрощает схему пуска.

Итак, для нормальной работы ЛЛ нужно обеспечить два условия:

1. Запустить прибор.

2. Обеспечить через него рабочий ток.

Именно этим и занимается пускорегулирующий аппарат (ПРА), который в обязательном порядке присутствует в любом люминесцентном светильнике. Он (аппарат) может быть двух типов – электромагнитного и электронного. О каждом типе ПРА мы поговорим отдельно.

ЭмПРА

Поскольку изначально мы говорили о дросселе (нередко его еще называют электромагнитным балластом), начнем с электромагнитного пускорегулирующего аппарата – ЭмПРА. Строго говоря, дроссель – не совсем ЭмПРА. Важная его часть — да, но не единственная. Но все по порядку.

Начнем с дросселя. По сути, это обычная катушка индуктивности. Одно из основных свойств любой катушки – способность оказывать электрическое сопротивление переменному току. Таким образом, включив дроссель последовательно с лампой, можно ограничить ее ток до нормальных величин.

Электромагнитные дроссели для люминесцентных лампы

Теперь пуск. Здесь кроме дросселя необходим еще один элемент – стартер. Кратенько коснемся его конструкции и принципа работы.

Конструкция стартера

Прибор представляет собой газосветную (неоновую) лампу 3, в которую впаяны электроды 2 и 1. Первый — просто электрод, а второй выполнен в виде изогнутой биметаллической пластины.

Как только в лампе появится тлеющий разряд, электроды начнут нагреваться и, в конце концов, тот, который выполнен из биметалла, разогнется и замкнется с неподвижным. Разряд прекратится, электроды через некоторое время остынут, контакт разорвется.

Конденсатор 4 – искрогасящий. А теперь пора посмотреть, как такая схема будет работать.

Схема подключения люминесцентной лампы к ЭмПРА

При включении питания напряжение проходит через дроссель и поступает на электроды люминесцентной лампы. Сопротивление ее газового промежутка велико, разряда не происходит. Пройдя по спиралям электродов, напряжение прикладывается к стартеру. Порог поджигания его неоновой лампы порядка 180 В, поэтому она зажигается и тлеющий разряд начинает подогревать биметаллический электрод.

Через некоторое время контакты стартера замыкаются накоротко, разряд в неоновой лампочке гаснет, а через спирали ЛЛ начинает течь ток, разогревая их. Времени на этот процесс отведено немного (пока не остынет биметаллическая пластина стартера), но вполне достаточно для качественного их разогрева (примерно до 700 градусов Цельсия).

Как только биметаллическая пластина остынет, контакты стартера разомкнутся, и к электродам ЛЛ будет приложено полное напряжение сети. Одновременно в момент размыкания контактов стартера из-за разрыва цепи за счет самоиндукции дроссель создает короткий высоковольтный (до киловольта) импульс напряжения, поджигающий ЛЛ.

Лампа загорается, сопротивление ее газового промежутка падает и в действие включается дроссель, ограничивающий ток в цепи в пределах рабочего. После этого стартер в работе не участвует, поскольку на электродах работающей ЛЛ, а значит, и на его выводах напряжение гораздо ниже порога срабатывания его неоновой лампы.

Интересно отметить, что после пуска ЛЛ ее спиральные электроды остывают не полностью. Под воздействием тлеющего разряда в трубке на них образуется раскаленная область — так называемое катодное пятно, которое на фото ниже помечено стрелкой.

Катодное пятно видно невооруженным глазом Для того, чтобы дроссель поддерживал нужный для конкретной лампы ток, мощность его должна быть равной мощности лампы. С маломощным дросселем лампе не хватит тока для работы, и она тут же погаснет. Ток будет больше – лампа сгорит.

Теперь пару слов о конденсаторе С1. Поскольку дроссель является индуктивностью, на нем рассеивается большая реактивная мощность, причем попусту, просто грея прибор. Конденсатор С1, который называют компенсационным, частично устраняет эту проблему, увеличивая коэффициент мощности (грубо говоря КПД) дросселя.

ЭПРА

Теперь поговорим об электронных пускорегулирующих устройствах — ЭПРА. Задачи у этого устройства те же – пуск ЛЛ и ограничение через нее тока. И хотя задачи те же, выполняются они совершенно по-другому – при помощи электроники. Еще одно существенное отличие ЭПРА от ЭмПРА – первому не нужны дополнительные элементы – стартер и компенсационный стабилизатор.

Конструктивно электронный пускорегулирующий аппарат представляет собой моноблок, в котором размещена электронная схема, создающая высоковольтный разряд в момент пуска лампы и поддерживающая необходимый ток во время ее работы.

Электронное пускорегулирующее устройство и его «внутренности»

Как и электромагнитный собрат, электронный должен иметь ту же мощность, что и применяемые лампы. Отличие же в том, что если электромагнитный балласт рассчитан на работу с одной лампой (или с двумя 110-ти вольтовыми), то электронный в зависимости от конструкции и назначения может «в одиночку» поддерживать работу одной, двух и даже четырех ламп с рабочим напряжением 220 В.

К этому ЭПРА можно подключить четыре люминесцентных лампы с рабочим напряжением 220 В

Еще одно существенное отличие электронного балласта от электромагнитного – в процессе работы прибор преобразует сетевое напряжение частотой 50 Гц в напряжение частотой в несколько десятков килогерц. Что это дает? Люминофор ЛЛ имеет очень малую инерционность, а потому питаясь сетевым напряжением через ЭмПРА, лампа мерцает с частотой 100 Гц.

Из-за инерционности нашего глаза мы этого почти не замечаем, но, по сути, такая лампа представляет собой стогерцовый стробоскоп, в свете которого быстро движущиеся части машин могут казаться неподвижными, что очень опасно.

Используя лампы на производстве, с этим недостатком борются, причем весьма успешно — запитывают рядом расположенные светильники от разных фаз или сдвигают на одном из светильников фазу фазосдвигающими конденсаторами, заставляя мигать светильники «вразнобой».

Но, во-первых, – это дает лишь частичный эффект, а, во-вторых, все это требует дополнительных затрат. ЭПРА же, питая лампы напряжением с частотами в десятки килогерц, не допускает даже малейшего мерцания лампы, поскольку инерционность у люминофора хоть и мала, но она есть.

Что касается коэффициента мощности, который у ЭмПРА без компенсационного конденсатора едва дотягивает до 0.4 – 0.5, то электроника вообще не нуждается в таких компенсаторах – она является очень слабой реактивной нагрузкой.

Схему подключения мы рассматривать не будем — она зависит от типа и назначения ЭПРА и, как правило, наносится на корпус устройства вместе с характеристиками ламп, для которых ЭПРА предназначен.

Схема подключения ламп наносится на корпус устройства

Возвращаясь к компактным люминесцентным лампам (КЛЛ) стоит отметить, что в них используются как раз ЭПРА, встроенные в цоколь.

Конструкция КЛЛ

Достоинства и недостатки

Основные принципиальные отличия ЭПРА от ЭмПРА мы выяснили. Осталось подвести итог и разобраться в достоинствах и недостатках приборов обоих типов, которые для удобства восприятия мы сведем в сравнительную табличку.

Сравнительные характеристики ЭПРА и ЭмПРА

Из вышеприведенной таблички хорошо видно, что электронные аппараты имеют неоспоримое преимущество перед электромагнитными. Тем не менее, благодаря своей дешевизне и длительному сроку службы последние пока еще не сдали своих позиций.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]