Принцип действие мтз: разновидности максимально-токовых защит

Принцип действие МТЗ: разновидности максимально-токовых защитПри коротком замыкании ток в линии увеличивается. Этот признак используется для выполнения токовых защит. Максимальная токовая защита (МТЗ) приходит в действие при увеличении тока в фазах линии сверх определенного значения.

Токовые защиты подразделяются на МТЗ, в которых для обеспечения селективности используется выдержка времени, и токовые отсечки, где селективность достигается выбором тока срабатывания. Таким образом, главное отличие между разными типами токовых защит в способе обеспечения селективности.

Принцип действие МТЗ: разновидности максимально-токовых защит Рис. 4.1.1

Мтз с независимой выдержкой времени

МТЗ – основная защита для воздушных линий с односторонним питанием. МТЗ оснащаются не только ЛЭП, но также и силовые трансформаторы, кабельные линии, мощные двигатели напряжением 6, 10 кВ.

Принцип действие МТЗ: разновидности максимально-токовых защит Рис. 4.2.1

Расположение защиты в начале каждой линии со стороны источника питания. На рис. 4.2.1 изображено действие защит при КЗ в точке К. Выдержки времени защит подбираются по ступенчатому принципу и не зависят от величины тока, протекающего по реле.

Схемы защиты МТЗ

Трехфазная схема защиты МТЗ на постоянном оперативном токе

Схема защиты представлена на рис.4.2.2: Основные реле:

  • Пусковой орган – токовые реле КА.
  • Орган времени – реле времени КТ.

Вспомогательные реле:

  • KL – промежуточное реле;
  • KH – указательное реле.

Принцип действие МТЗ: разновидности максимально-токовых защит

Принцип действие МТЗ: разновидности максимально-токовых защит Рис. 4.2.2

Промежуточное реле устанавливается в тех случаях, когда реле времени не может замыкать цепь катушки отключения YAT из-за недостаточной мощности своих контактов. Блок-контакт выключателя SQ служит для разрыва тока, протекающего по катушке отключения, так как контакты промежуточных реле не рассчитываются на размыкание. 

Двухфазные схемы защиты МТЗ на постоянном оперативном токе

В тех случаях, когда МТЗ должна реагировать только при междуфазных КЗ, применяются двухфазные схемы с двумя или одним реле, как более дешевые.

Двухрелейная схема

Принцип действие МТЗ: разновидности максимально-токовых защит

Принцип действие МТЗ: разновидности максимально-токовых защит

Рис. 4.2.3

Достоинства

1. Схема реагирует на все междуфазные КЗ на линиях.

2. Экономичнее трехфазной схемы.

Недостатки

Меньшая чувствительность при 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр. (В два раза меньше чем у трехфазной схемы).

Принцип действие МТЗ: разновидности максимально-токовых защит Рис. 4.2.4

При необходимости чувствительность можно повысить, установив третье токовое реле в общем проводе токовых цепей. Чувствительность повышается в два раза – схема становиться равноценной по чувствительности с трехфазной.

Схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ.

двухфазные схемы применяются в качестве защиты от междуфазных КЗ и в сетях с глухозаземленной нейтралью, при этом для защиты от однофазных КЗ устанавливается дополнительная защита, реагирующая на ток нулевой последовательности.

Одно-релейная схема МТЗ

Принцип действие МТЗ: разновидности максимально-токовых защит

Принцип действие МТЗ: разновидности максимально-токовых защит

 Рис. 4.2.5

  • Схема реагирует на все случаи междуфазных КЗ.
  • Достоинства
  • Только одно токовое реле.
  • Недостатки
  1. Меньшая чувствительность по сравнению с 2 – релейной схемой при КЗ между фазами АВ и ВС.
  2. Недействие защиты при одном из трех возможных случаев 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр.
  3. Более низкая надежность – при неисправности единственного токового реле происходит отказ защиты. Схема применяется в распределительных сетях 6…10 кВ и для защиты электродвигателей.

Рис. 4.2.6

Выбор тока срабатывания защиты МТЗ

Защита должна надежно срабатывать при повреждениях, но не должна действовать при максимальных токах нагрузки и её кратковременных толчках (например, запуск двигателей).

  • Слишком чувствительная защита может привести к неоправданным отключениям.
  • Главная задача при выборе тока срабатывания состоит в надежной отстройке защиты от токов нагрузки.

Существуют два условия определения тока срабатывания защиты.

Первое условие. Токовые реле не должны приходить в действие от тока нагрузки:

Iс.з>Iн.макс, (4.1)

где Iс.з – ток срабатывания защиты (наименьший первичный ток в фазе линии, необходимый для действия защиты);

Iн.макс – максимальный рабочий ток нагрузки.

Второе условие. Токовые реле, сработавшие при КЗ в сети, должны надёжно возвращаться в исходное положение после отключения КЗ при оставшемся в защищаемой линии рабочем токе.

При КЗ приходят в действие реле защит I и II (рис.4.2.1). После отключения КЗ защитой I прохождение тока КЗ прекращается и токовые реле защиты II должны вернуться в исходное положение.

Ток возврата реле должен быть больше тока нагрузки линии, проходящего через защиту II после отключения КЗ.

 И этот ток в первые моменты времени после отключения КЗ имеет повышенное значение из–за пусковых токов электродвигателей, которые при КЗ тормозятся вследствие понижения (при КЗ) напряжения:

Рис. 4.2.7

Iвоз>kзIн.макс . (4.2)

Увеличение Iн.макс, вызванное самозапуском двигателей, оценивается коэффициентом запуска kз.

Учет самозапуска двигателей является обязательным.

При выполнении условия (4.2) выполняется и условие (4.1), так как IвозtввI+tпI+tвI. (4.9)

  • Выдержка времени защиты II может быть определена как
  • tввII=tввI+tпI+tвI+tпII+tзап, (4.10)
  • где tпII – погрешность в сторону снижения выдержки времени защиты II; tзап – время запаса.
  • Таким образом, минимальная ступень времени t может быть вычислена как

t=tввII – tввI=tпI+tвI+tпII+tзап. (4.11)

По формуле (4.11) определяется ступень времени для защит с независимой характеристикой времени срабатывания от тока.

Рекомендуется принимать t =0,35…0,6 с.

Выбор времени действия защит МТЗ

Источник: https://pue8.ru/relejnaya-zashchita/244-maksimalnaya-tokovaya-zashchita.html

2.4. Трехступенчатые токовые защиты

2.4. Трехступенчатые токовые защиты

Для того чтобы обеспечить надежную защиту электрических сетей при повреждениях, часто недостаточно использовать защиту одного вида. Так, токовые отсечки обеспечивают быстрое выявление повреждений, но имеют зоны нечувствительности в конце контролируемого объекта.

МТЗ имеют достаточно протяженные зоны действия, но их приходится выполнять с большими выдержками времени срабатывания, особенно на головных участках сетей, где требуется высокое быстродействие.

Для того чтобы максимально использовать достоинства защит разных типов, их объединяют в один комплекс.

Наибольшее распространение получили трехступенчатые токовые защиты. В качестве первой ступени используются токовые отсечки мгновенного действия (селективные токовые отсечки). В качестве второй — токовые отсечки с выдержкой времени срабатывания (неселективные токовые отсечки). В качестве третьей ступени — МТЗ.

Принцип действие МТЗ: разновидности максимально-токовых защит

Трехступенчатые токовые защиты могут быть неполными. Например, на головной линии W1 (рис. 2.13), как правило, устанавливаются все ступени защиты. На смежных с головным участком сети линиях (W2) чаще используют только две ступени: первую и третью. На удаленных от источника питания объектах сети (линия W3) обычно достаточно только третьей ступени защиты — МТЗ.

Расчеты целесообразно вести начиная с наиболее удаленной от источника питания линии (W3). Первичный ток срабатывания третьей ступени защиты 3 определяется так:

Принцип действие МТЗ: разновидности максимально-токовых защит

  • где IС ЗАП W3 и IРАБ МАХ W3 — соответственно значение тока самозапуска в послеаварийном режиме и максимальное значение рабочего тока в линии W3 в нормальном режиме;
  • kЗ — коэффициент запаса (для защит, имеющих выдержку времени);
  • kв — коэффициент возврата;
  • kС ЗАП W3 — коэффициент самозапуска для линии W3.
  • Выдержка времени срабатывания третьей ступени защиты 3:

Принцип действие МТЗ: разновидности максимально-токовых защит

где tC3 Н4 — максимальное время срабатывания защит нагрузок, с которыми третья ступень защиты 3 может иметь общую зону действия;

?t — ступень селективности.

Параметры срабатывания МТЗ второй и первой линий определяются аналогично:

Принцип действие МТЗ: разновидности максимально-токовых защит

Первичный ток срабатывания первой ступени (отсечки мгновенного действия) второй линии:

Принцип действие МТЗ: разновидности максимально-токовых защит

Аналогично определяется ток срабатывания первой ступени защиты 1:

Принцип действие МТЗ: разновидности максимально-токовых защит

Вторая ступень защиты 1 должна быть отстроена от тока срабатывания первой ступени защиты, установленной на следующей (второй) линии:

Принцип действие МТЗ: разновидности максимально-токовых защит

где k3 1–2 и k3 2–1 — коэффициенты запаса по току второй ступени защиты первой линии и первой ступени второй линии соответственно; в общем случае значения этих коэффициентов различны, так как первая ступень защиты не имеет выдержки времени, а вторая — с целью обеспечения селективности действия — имеет.

По времени вторая ступень защиты 1 также должна быть отстроена от времени действия быстродействующих защит отходящих присоединений (вторая линия), с которыми имеет общую зону действия:

Принцип действие МТЗ: разновидности максимально-токовых защит

где tC3 2–1 — время действия первой ступени защиты 2.

Токи срабатывания реле (вторичные токи) отдельных ступеней защит вычисляются так:

Принцип действие МТЗ: разновидности максимально-токовых защит

  1. где IC3 — первичный ток срабатывания соответствующей ступени защиты;
  2. kСХ — коэффициент схемы;
  3. kт — коэффициент трансформации ТТ защиты.

Базовая схема токовой трехступенчатой защиты, устанавливаемой на отходящей линии электропередачи 10 кВ, показана на рис. 2.14.

Принцип действие МТЗ: разновидности максимально-токовых защит

Чувствительность первых ступеней защит оценивается по величине зоны действия. Зона действия, как правило, определяется графически.

Чувствительность вторых ступеней может оцениваться по величине зоны действия или по значению коэффициента чувствительности.

Если зона действия второй ступени полностью охватывает контролируемую линию, то третья ступень защиты этой линии выполняет только резервные функции.

Читайте также:  Виды и маркировка полипропиленовых труб для отопления

Если же зона действия второй ступени меньше длины контролируемой линии, то третья ступень защиты линии является основной.

Чувствительность третьих ступеней защит оценивается по коэффициенту чувствительности, как у отдельных МТЗ.

Данный текст является ознакомительным фрагментом.

Следующая глава

Источник: https://info.wikireading.ru/247262

Максимальная токовая защита трансформаторов: схемы, особенности

Простейшая одноразовая защита электрооборудования от токовой перегрузки – это плавкий предохранитель. Он применяется до сих пор, хотя стал служить для аварийного отключения питания еще до начала XX в.

Сейчас наряду с ним для повышения надежности и безопасности сетей электропитания применяют устройства релейной защиты и автоматики. Наиболее распространенным видом которых считается максимальная токовая защита трансформатора.

Она отключает питание потребителей, когда их ток становится выше порогового значения.

Причиной этого может быть как выход из строя одного из элементов нагрузки, так и замыкания фаз между собой или на ноль, возникающие на участках подключения потребителей и источника тока.

В случае возникновения подобной аварийной ситуации автоматика срабатывает, и обесточивает подконтрольную ей часть электрической системы и области запитанные после нее.

Принцип действие МТЗ: разновидности максимально-токовых защит

Устройство и особенности МТЗ

Принцип действия максимальной токовой защиты трансформатора подобен принципу работы токовой отсечки.

Сигнал выключения электропитания формируется при условии роста потребляемого тока выше порогового значения (уставки).

Различаются эти системы лишь тем, что отсечка действует практически без задержки, а максимальные токовые защиты трансформаторов выключает питание спустя некоторое время, именуемое выдержкой времени.

Ее размер зависит от расположения защищаемого устройства. Он должен быть тем меньше, чем дальше находиться участок сети от источника питания (ИП). Для самых удаленных потребителей она делается как можно меньшей. А МТЗ участка электросети, расположенного ближе срабатывает с выдержкой, превышающей минимальную на величину ступени селективности.

Которая зависит от времени срабатывания защитного устройства.

Это необходимо для того, чтобы после появления неисправности в какой-либо части системы защитная аппаратура более близкой области не сработала раньше, той в которой появился дефект.

Если же автоматика вышедшего из строя участка не среагирует, то по окончании времени выдержки придет в действие защитное устройство более близкой к ИП области. Оно и отключит поврежденную область вместе со своей.

Принцип действие МТЗ: разновидности максимально-токовых защит

Из сказанного выше следует, что принцип действия токовой мтз трансформатора предъявляет к выдержке 2 противоположные требования. Чтобы исключить преждевременное обесточивание потребителей расположенных к ИП ближе места аварии она должна быть несколько больше времени срабатывания МТЗ. И в то же время как можно меньше для сведения ущерба от КЗ к минимуму.

Классификация

МТЗ трансформатора в зависимости от характера связи времени выдержки с величиной тока КЗ делят на 3 основные группы:

  • Независимые. Этот вид состоит из МТЗ с неизменной на всем рабочем интервале значений аргумента выдержкой времени (tвыд.). Которая в интервале значений тока от 0 до Iсраб. включительно уменьшается до 0. Графически корреляцию данных параметров можно представить в виде двух отрезков параллельных оси X. Один из них находящийся на расстоянии tвыд от нее, другой, лежащий ней. Если ось X графика принять за ток, а Y – за время выдержки. Устройства, входящие в эту категорию являются основным видом электрозащиты воздушных ЛЭП, запитанных с одной стороны. Они применяются также и для силовых трансформаторов, кабельных линий, и электродвигателей рабочим напряжением от 6 до 10 тыс. В.

Принцип действие МТЗ: разновидности максимально-токовых защит

  • Зависимые. Эту группу составляют МТЗ с обратной нелинейной зависимостью выдержки времени от тока. График, отражающий связь этих параметров, является кривой формой напоминающую гиперболу. МТЗ защита трансформатора такого типа дает возможность считаться с перегрузочной способностью электрооборудования, и выполнять защиту от токовых перегрузок.
  • Ограниченно зависимые. Максимальная токовая МТЗ защита трансформатора, относящаяся к этой группе, объединяет в себе характеристики 2 предыдущих. А именно: рост тока до определенного значения пропорционально сокращает время срабатывания. Дальнейшее же увеличение первого не приводит к снижению выдержки времени. Поэтому изображение зависимости этих параметров является гиперболой, переходящей в прямую линию.

Принцип действие МТЗ: разновидности максимально-токовых защит

Встречается также комбинированный вид защиты МТЗ. Он отличается большей помехозащищенностью и меньшим числом ложных срабатываний. Принцип действия этой мтз трансформатора состоит в том, что необходимость отключения питания определяется не только по росту потребляемого тока, но и по снижению питающего напряжения.

Что достигается сочетанием токовой защиты с реле минимального напряжения. Такая конфигурация не допускает отключения питания в момент запуска мощного электродвигателя, когда возникает значительный быстрый рост потребляемой мощности на участке сети.

Так как сработка токовой защиты блокируется из-за отсутствия падения напряжения.

Инсталляция МТЗ

При КЗ электроток идет от источника питания к месту замыкания.

Поэтому чем ближе к ИП установлен блок защитного устройства, тем обширнее участок сети на возникновение, неисправности в котором она будет реагировать. К примеру, рассмотрим защиту понижающего трансформатора.

Автоматика, установленная на кабель высокого напряжения ближе к ИП, среагирует на возникновение неисправности этого кабеля, устройств коммутации, самого трансформатора, проводки низкого напряжения и подключенных к ней потребителей.

А при ее установке на шины пониженного напряжения возникающие дефекты трансформатора и подвода питающего напряжения останутся «незамеченными».

Принцип действие МТЗ: разновидности максимально-токовых защит

Следовательно, для максимального контроля участка сети защитой ее необходимо устанавливать на кабель, подающий питание возможно ближе к источнику. Но 1 защитное устройство для всего участка сети удобно в эксплуатации только при небольшом количестве потребителей на нем.

Так как защитное отключение участка с большим числом электроприемников, во-первых, обесточивает не только вышедшей из строя потребитель, но и все исправные. А во-вторых не позволяет определить, в какой зоне произошла авария.

Поэтому для удобства работы и облегчения содержания электросети в исправном состоянии следует также установить автоматику на стороне низкого напряжения.

Определение защитных параметров

Задание уставок МТЗ с блокировкой по напряжению сводятся к выбору значений выдержки времени, а также тока и напряжения срабатывания. Юстировка независимых МТЗ ограничивается подбором тех же параметров, что в предыдущем случае. Для максимальных токовых защит с зависимой и ограниченно зависимой связью понятие тока срабатывания корректируется.

Оно означает его величину, которая ставит систему на грань срабатывания, но еще недостаточна для сработки. Время же задается для независимого участка ограниченно зависимой время токовой взаимосвязи. Причем иногда оно назначается для тока, превышающего номинальный более чем в 10 раз. Как, например, в некоторых моделях автомата «Электрон».

Принцип действие МТЗ: разновидности максимально-токовых защит

Уставки

Требования к току срабатывания.

  • Достаточность для уверенного определения аварийных ситуаций.
  • Исключение случаев срабатывания автоматики при максимальных рабочих токах потребителей и их поставарийных перегрузках. Для этого ток сработки должен превышать наибольший ток потребителя, и перегрузки после восстановления питания.
  • Согласование устройства по всем параметрам срабатывания с автоматикой соседних участков электросети. Находящихся как ближе к ИП (в основной зоне), так и дальше от него (в зоне резервирования).

Принцип действие МТЗ: разновидности максимально-токовых защит
Рис.1 Защитные зоны

Ток возврата реле в исходное положение должен быть больше рабочего тока участка сети, после устранения КЗ. Для того чтобы отключение аварийного участка оператором автоматически приводило к восстановлению питания других, обесточенных защитным устройством потребителей.

Некоторые схемные решения

Трехфазное устройство защитного отключения (УЗО). Чувствительно ко всем типам замыкания любой фазы. Основой этого устройства являются токовые реле 1. Они срабатывают при подаче на них сигнала КЗ. Их нормально разомкнутые контактные группы запараллелины, поэтому срабатывание любого из них приводит к пуску времязадающего реле 2.

По истечении установленного промежутка времени оно включает реле-повторитель 3, срабатывающее без задержки и подающее на выключатель сигнал отключения. Реле 3 необходимо в случае, когда мощность катушки выключателя слишком велика для исполнительных контактов реле времени.

Реле 4 (блинкерное) служит для индикации срабатывания выключателя. Оно подключается последовательно катушке выключателя.

Поэтому его срабатывание происходит одновременно с выключателем УЗО, а выпавший в результате этого блинкер (сигнализатор) указывает на факт отключения питания участка.

Принцип действие МТЗ: разновидности максимально-токовых защит

Двухфазное УЗО. Отслеживает все межфазные КЗ и замыкание 2 из 3 фаз с землей на участке сети. Не имеет принципиальных отличий от трехфазного устройства. К ее преимуществам можно отнести более низкую стоимость за счет меньшего количества комплектующих и монтажных проводов. А также лучшую селективность при замыканиях с землей в 2 различных точках.

Читайте также:  Как устранить засор в трубах в домашних условиях: обзор лучших средств и методов прочистки

Недостатки: меньшая чувствительность при КЗ во вторичных обмотках понижающего трансформатора.
Благодаря своим качествам этот тип устройств часто используется в электросистемах с изолированной нейтралью. При необходимости повышения чувствительности на нулевой провод устанавливают дополнительное токовое реле.

Принцип действие МТЗ: разновидности максимально-токовых защит

Источник: https://OTransformatore.ru/vopros-otvet/maksimalnaya-tokovaya-zashhita-transformatora/

Токовая отсечка и максимальная токовая защита — особенности, схема и принцип работы

Принцип действие МТЗ: разновидности максимально-токовых защитНе все понимают отличия между токовой отсечкой и максимальной токовой защитой, которые в большинстве источников для краткости обозначаются аббревиатурами ТО (не путать с техническим обслуживанием) и МТЗ. И это объяснимо, так как и отсечка, и максимальная защита выполняют одну и ту же функцию – предохранение эл/цепи, ее элементов и присоединенных устройств от разрушения (выхода из строя).

Так в чем их смысл и есть ли какая-то разница между ними? С этим мы и разберемся.

При написании данной статьи автор изучил различные источники и пришел к выводу, что по этому вопросу очень много путаницы. Именно поэтому он рекомендует  в первую очередь обратиться к основополагающему документу – ПУЭ (3.2.) .

А весь остальной материал, встречающийся в интернете, следует рассматривать лишь как пояснения (разъяснения) к положениям правил.

Причем нужно относиться к этой информации критически, сопоставляя ее с тем, что прописано (хотя и несколько «скуповато»), в ПУЭ.

Принцип действие МТЗ: разновидности максимально-токовых защит

По принципу действия максимальная токовая защита и отсечка идентичны. Элементы, их обеспечивающие, реагируют на один и тот же параметр электрической цепи – ток, точнее, на его величину. При превышении им определенного, заданного значения (уставки) защитное устройство срабатывает. Разница в том, как именно?

Ток, протекающий по проводникам (а они характеризуются своим удельным сопротивлением, в зависимости от материала – алюминий или медь) приводит к их нагреву. И чем выше его значение, тем сильнее.

При повреждениях изоляции и коротких замыканиях данный параметр может вырасти резко и достигать большой величины. Результат вполне прогнозируем.

Кстати, это одна из основных причин, если верить статистике, всех воспламенений в электрифицированных зданиях и сооружениях.

Принцип действие МТЗ: разновидности максимально-токовых защит

Именно поэтому для каждой электрической цепи предусматривается свой номинал тока, при превышении которого цепь должна разрываться. В этом – смысл любой защиты данного типа.  Многое зависит от того, где именно произошло повреждение.

В силу удельного сопротивления металлов быстрее среагирует то устройство, которое расположено ближе к «аварийной зоне». Многое зависит и от электрической схемы.

Если она сложная, то в ней предусматривается несколько защитных автоматов – общий и на каждой «нитке» (также прописано в ПУЭ).

С учетом множественности вариантов проектирования электрических цепей однозначно сказать, в чем принципиальная разница между токовой отсечкой и МТЗ, нельзя. Все зависит от характеристик схемы и места расположения в ней того или иного защитного изделия. Если суммировать всю информацию по ТО и МТЗ, то можно сделать следующие выводы.

  • Селективности (синоним слова избирательность) обеспечиваются: МТЗ – задержкой срабатывания (выдержкой времени), ТО – отстройкой по номиналу тока. Яркий пример – УЗО. Но это не обязательное условие, так как если на линии лишь 1 автомат, причем одноступенчатый, то задержки времени быть не должно.
  • Максимальная токовая защита является основной. При включении в цепь дифференциального устройства она переходит в категорию резервной. ТО используется лишь как дополнительная функция предохранения линии и оборудования. Более подробно об этом можно узнать в ПУЭ 3.2.16 (26).
  • Токовая отсечка – разновидность МТЗ, только с ограниченным «радиусом действия».
  • Принцип действие МТЗ: разновидности максимально-токовых защит
  • Все остальные суждения по данному вопросу (например, что ТО является основным видом защиты) – не более чем выдумки, вызванные малой осведомленностью тех, кто делает подобные заявления.
  • Автор будет рад, если статья поможет читателю понять, в чем разница между токовой отсечкой и максимальной защитой.

Источник: https://electroadvice.ru/electric/tokovaya-otsechka-i-maksimalnaya-tokovaya-zashhita/

Основные защиты силового трансформатора

Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.

Все основные виды защиты трансформатора можно разделить на две группы:

В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:

  • Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов)
  •  Токовая отсечка мгновенного действия для защиты трансфер мотора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания
  • Газовая защита для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
  •  Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверх токов, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверх токов действуют, как правило, с выдержкой времени.
  •  Защита от замыканий на корпус
  • Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
    Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  •  замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.
  • Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.
  • Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.
  • Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:
  • отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
  •  отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверх тока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
  •  подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.

Защита по максимальному току (МТЗ)

Принцип действие МТЗ: разновидности максимально-токовых защитРис.1 схема релейной защиты трансформатора по максимальному току

Защита по максимальному току трансформатора  срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле.

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Силовые трансформаторы относительно малой мощности обычно защищают предохранителями со стороны высшего напряжения и предохранителями или автоматами со стороны отходящих линий низшего напряжения.

Ток плавкой вставки высоковольтного предохранителя выбирается с учетом отстройки от бросков тока намагничивания при включении силового трансформатора под рабочее напряжение.

С учетом этого номинальный ток предохранителя.

Резервная токовая защиты

В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.

МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с дву­мя выдержками времени.

С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.

В случае, когда с высокой стороны трансформатора установле­ны короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени действуют на включение короткозамыкателя, тем самым создавая искусс­твенное однофазное короткое замыкание, отключаемое защитой пита­ющих линий. В бестоковую паузу (при АПВ питающих линий) произво­дится автоматическое отключение отделителя, после чего повреж­денный трансформатор (автотрансформатор) оказывается полностью отключенным.

Передача команды – импульса на отключение выключателя с пи­тающей стороны линии при повреждении в трансформаторе, не имею­щем выключателя с высокой стороны, может выполняться и без вклю­чения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключе­ния по высокочастотному каналу.

  1. С целью ближнего резервирования защит трансформатора пре­дусматривается резервная независимая МТЗ-110кВ.
  2. Эта защита является полностью автономной как по цепям то­ка,оперативным цепям, так и по выходным цепям.
  3. Резервная МТЗ-110 с выдержкой времени большей времени сра­батывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.
  4. С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.
  5. При этом допускается разрешение отделителя во имя спасения самого трансформатора.
  6. На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой пос­ледовательности, действующие на отключение трансформатора.
  7. На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).
Читайте также:  Дымоход своими руками: устройство и установка дымового канала в частном доме

Дистанционные защиты предназначены для отключения междуфаз­ных к.з., а НТЗНП – для отключения одно- и двухфазных  к.з.  на землю.

Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.

Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки выс­шего напряжения АТ, дифзащиты шин среднего напряжения.

Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.

Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.

Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключате­лей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.

На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со вто­рой – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.

Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” дейс­твуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.

Такое ступенчатое действие резервных защит позволяет сохра­нить в работе те АТ, которые отделяются от места к.з. после де­ления систем шин.

Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,

А/У-330) и при включении выключателей стороны среднего напряже­ния ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.

При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ

  • Защита выполняется только на выключателях с пофазным управ­лением.
  • Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.
  • Защита действует на отключение трех фаз включаемого выклю­чателя.
  • Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)

  1. Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.
  2. Защита, как правило, действует на отключение АТ со всех сторон.

  3. Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.
  4. На АТ-750кВ  для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

  5. Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю.

В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Видео: Релейная защита. Вводная лекция

Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.

Читайте так же:

Источник: https://transformator220.ru/harakteristiki/silovye/osnovnye-zashhity-silovogo-transformatora.html

Максимальная токовая защита — это… Что такое Максимальная токовая защита?

Максима́льная то́ковая защи́та (МТЗ)— вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.

Принцип действия

Принцип действия МТЗ аналогичен принципу действия токовой отсечки. В случае повышения силы тока в защищаемой сети защита начинает свою работу. Однако, если токовая отсечка действует мгновенно, то максимальная токовая защита даёт сигнал на отключение только по истечении определённого промежутка времени, называемого выдержкой времени.

Выдержка времени зависит от того, где располагается защищаемый участок. Наименьшая выдержка времени устанавливается на наиболее удалённом от источника участке. МТЗ соседнего (более близкого к источнику энергии) участка действует с большей выдержкой времени, отличающейся на величину, называемую ступенью селективности.

Ступень селективности определяется временем действия защиты. В случае короткого замыкания на участке срабатывает его защита. Если по каким-то причинам защита не сработала, то через определённое время (равное ступени селективности) после начала короткого замыкания сработает МТЗ более близкого к источнику участка и отключит как повреждённый, так и свой участок.

По этой причине важно, чтобы ступень селективности была больше времени срабатывания защиты, иначе защита смежного участка отключит как повреждённый, так и рабочий участок до того, как собственная защита повреждённого участка успеет сработать.

Однако важно так же сделать ступень селективности достаточно небольшой, чтобы защита успела сработать до того, как ток короткого замыкания нанесёт серьёзный ущерб электрической сети.

Уставку (или величину тока, при которой срабатывает защита) выбирают, исходя из наименьшего значения тока короткого замыкания в защищаемой сети (при разных повреждениях токи короткого замыкания отличаются).

Однако при выборе уставки следует так же учитывать характер работы защищаемой сети.

Например, при самозапуске электродвигателей после перерыва питания, значение силы тока в сети может быть выше номинального, и защита не должна его отключать.

Реализация

Реализуется МТЗ, как правило, с помощью реле тока.

Реле тока могут быть как мгновенного действия, так и срабатывающие с выдержкой времени, определяемой величиной тока, в этом случае для обеспечения необходимой выдержки времени дополнительно используют реле времени. В современных схемах релейной защиты и автоматики чаще всего используются микропроцессорные блоки защиты, которые сочетают в себе свойства этих реле.

Литература

  • «Релейная защита и автоматика систем электроснабжения» Андреев В. А. М. «Высшая школа» 2007 ISBN 978-5-06-004826-1
  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. М. Энергоатомиздат 1998 ISBN 5-283-010031-7
  • «Максимальная токовая защита» Шабад М. А. Ленинград. Энергоатомиздат. 1991
  • Гуревич, В. И. Электрические реле : устройство, принцип действия и применения : настольная книга инженера.- Москва: Солон-Пресс, 2011. — 688 с.: ил.

Источник: https://dic.academic.ru/dic.nsf/ruwiki/587293

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]