Принцип работы термопары: подключение преобразователя хромель-алюмень

13431 просмотров

Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Общие характеристики

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Термопары

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства. 

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток.

Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением.

Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком.

Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо.

Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра.

Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла.

Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала — хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/оС, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С — + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800оС, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Термопары хромель-алюмель

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

Плюсы:

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Термопара «Арбат»

Минусы:

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

Источник: http://www.PortalTepla.ru/kotli-i-kotelnoe-oborudovanie/termopara-prinsip-raboty/

Термопара хромель алюмель характеристики

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки.

Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений.

В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов.

В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары.

Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык.

Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай.

Схематически устройство изображено на рисунке 1.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Красным цветом выделено зону горячего спая, синим – холодный спай.

Читайте также:  Светодиод - характеристики и определение полярности

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Принцип работы термопары: подключение преобразователя хромель-алюмень

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС.

Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает.

Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки.

Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки.

Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

Принцип работы термопары: подключение преобразователя хромель-алюмень

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

  • ТПП13 – платинородий-платиновые (тип R);
  • ТПП10 – платинородий-платиновые (тип S);
  • ТПР – платинородий-платинродиевые (тип B);
  • ТЖК – железо-константановые (тип J);
  • ТМКн – медь-константановые (тип T);
  • ТНН – нихросил-нисиловые (тип N);
  • ТХА – хромель-алюмелевые (тип K);
  • ТХКн – хромель-константановые (тип E);
  • ТХК – хромель-копелевые (тип L);
  • ТМК – медь-копелевые (тип M);
  • ТСС – сильх-силиновые (тип I);
  • ТВР – вольфрамрениевые (типы A-1 – A-3).

Источник: https://moy-instrument.ru/masteru/termopara-hromel-alyumel-harakteristiki.html

Термоэлектрический преобразователь — термопара

Термопара — термоэлектрический преобразователь — это два разных сплава металла (проводники) которые образуют замкнутую цепь (термоэлемент). Термопара — один из наиболее распространенных в промышленности температурный датчик.

Применяется в любых сферах промышленности, автоматики, научных исследованиях, медицине — везде, где нужно измерять температуру. Так же применяется в термоэлектрических генераторах для преобразования тепловой энергии в электрическую.

Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. — термоэлектрический эффект или эффект Зеебека.

В замкнутой цепи, состоящей из разнородных проводников, возникает термоэлектрический эффект (термо-ЭДС), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой.

В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.), термопара образует термоэлектрический термометр.

Измерительный прибор подключают либо к концам термоэлектродов, либо в разрыв одного из них. В среду, которую контролируют, помещают рабочий спай, а свободные концы подсоединяются к измерительному прибору. Чем больше различие между свойствами проводников и тепловой перепад на концах, тем выше термо-ЭДС.

По-простому — термопара это две проволоки из разнородных металлов (например, Хромель и Копель), сваренных или скрученных между собой. Место сварки (скрутки) называется рабочий спай Т1, а места соединения с измерительным прибором Т2 называют холодными спаями.

То есть рабочий спай помещают в среду, температуру которой необходимо измерить, а холодные спаи подключают к приборам (милливольтметр). Но надо знать прибор — например, ИРТ 7710 не меряет температуру рабочего спая, он меряет разницу температур холодного и рабочего спаев.

Это значит простым милливольтметром (тестером) мы можем узнать, поступает ли сигнал с рабочего спая (есть обрыв или нет), узнать где у термопары плюс (+) а где (-), примерно узнать какой тип термопары (но для этого нужен точный милливольтметр).

Принцип работы термопары: подключение преобразователя хромель-алюмень

Типы, виды термопар

Типы российских термопар приведены в ГОСТ 6616-94.

Почему российские термопары? Термопара ТХК, то есть Хромель-Копель была придумана в СССР и сейчас выпускается только у нас и в странах СНГ. Не известно почему, но везде пишут ХК (L) — в скобках подразумевается международный тип, но это не так — на западе тип L это (Fe-CuNi).

Может быть, они чем то и похожи по названию металлов входящих в сплав, но самое главное — у них разные таблицы НСХ. Мы с этим столкнулись, заказывая термопару из Италии. Наш совет — когда закупаете термопарный провод или кабель, сравнивайте таблицы НСХ, т.е.

номинальные статические характеристики преобразователя ГОСТ Р 8.585-2001.

Таблица соответствия типов отечественных и импортных термопар

Тип температурного датчика Сплав элемента Российская маркировка температурных датчиков Температурный диапазон
Термопара типа ТХК — хромель, копель (производства СССР или РФ) хромель, копель -200 … 800 °C
Термопара типа U медь-медьникелевые -200 … 500 °C
Термопара типа L хромель, копель ТХК -200 … 850 °C
Термопара типа B платинородий — платинородиевые ТПР 100 … 1800 °C
Термопара типа S платинородий — платиновые ТПП 0 … 1700 °C
Термопара типа R платинородий — платиновые ТПП 0 … 1700 °C
Термопара типа N нихросил нисил ТНН -200 … 1300 °C
Термопара типа E хромель-константановые ТХКн 0 … 600 °C
Термопара типа T медь — константановые ТМК -200 … 400 °C
Термопара типа J железо — константановые ТЖК -100 … 1200 °C
Термопара типа K хромель, алюмель ТХА -200 … 1300 °C

Таблица ANSI Code (Американский национальный институт стандартов) и IEC Code (Международная электротехническая комиссия — МЭК)

В настоящее время в её состав входят более 76 стран (наша в том числе).

Принцип работы термопары: подключение преобразователя хромель-алюмень Принцип работы термопары: подключение преобразователя хромель-алюмень Принцип работы термопары: подключение преобразователя хромель-алюмень

Источник: http://eltermo.ru/termopara.html

Термопара (термоэлектрический преобразователь)

     Термопара (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

     Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

     Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединенные навстречу друг другу.

Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля равной 300 °C и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ.

  • Принцип работы термопары: подключение преобразователя хромель-алюмень
  • Фотография термопары
  • Принцип действия

     Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю.

Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС.

У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная.

Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способ подключения (Схема подключения)

    Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный.

В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам.

Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

    Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр.

Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов.

Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.

Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

  • Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
  • Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
  • При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
  • По возможности избегать резких температурных градиентов по длине термопары;
  • Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
  • Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
  • Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.
Читайте также:  Давление природного газа в жилых домах

Применение термопар

     Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

     В 1920-х — 1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

     Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые
  • платинородий-платиновые
  • платинородий-платинородиевые
  • железо-константановые (железо-медьникелевые)
  • медь-константановые (медь-медьникелевые)
  • нихросил-нисиловые (никельхромникель-никелькремниевые)
  • хромель-алюмелевые
  • хромель-константановые
  • хромель-копелевые
  • медь-копелевые
  • сильх-силиновые
  • вольфрам и рений — вольфрамрениевые

     Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют.

По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

     В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

     В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

     Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Тип термопары Темп. коэффициент, μV/°C Температурный диапазон °C (длительно) Температурный диапазон °C (кратковременно) Класс точности 1 (°C) Класс точности 2 (°C)
K 41 0 до +1100 −180 до +1300 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C
J 55.2 0 до +700 −180 to +800 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 750 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 750 °C
N 0 до +1100 −270 to +1300 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C
R 0 до +1600 −50 to +1700 ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C
S 0 до 1600 −50 до +1750 ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C
B +200 до +1700 0 до +1820 ±0.0025×T от 600 °C до 1700 °C
T −185 до +300 −250 до +400 ±0.5 от −40 °C до 125 °C ±0.004×T от 125 °C до 350 °C ±1.0 от −40 °C до 133 °C ±0.0075×T от 133 °C до 350 °C
E 68 0 до +800 −40 до +900 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 800 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 900 °C

Источник: wikipedia

Источник: https://agat-npo.ru/page/23

Термопреобразователи сопротивления и термопары

В данной статье приведены основные технические характеристики термопреобразователей сопротивления, ГОСТ 6651-94 (Общие технические требования и методы испытаний) и преобразователей термоэлектрических (далее термопары), ГОСТ 6616-94 (Общие технические условия, а также рекомендации по правильному выбору термопреобразователей, их установке, подключению и обслуживанию. 

(Также см. статью: Что такое температура? Как правильно измерять температуру? Что выбрать: термосопротивление или термопару? Советы по применению.) 

Термины и определения

  • Термоэлектрический эффект — генерирование термоэлектродвижущей силы (термо-ЭДС), возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи. 
  • Термопара — два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.
  • Соединение при измерении (рабочий конец для термопар) — соединение, подлежащее воздействию температуры, которую необходимо измерить.
  • Соединение при контроле (свободный конец для термопары) — соединение термопары, находящееся при известной температуре, с которой сравнивают измеряемую температуру.
  • Длина монтажной части — для термопреобразователей сопротивления и термопар с неподвижным штуцером или фланцем — расстояние от рабочего конца защитной арматуры до опорной плоскости штуцера или фланца; для термопреобразователей сопротивления и термопар с подвижным штуцером или фланцем, а также без штуцера или фланца — расстояние от рабочего конца защитной арматуры до головки, а при отсутствии ее — до мест заделки выводных проводников. 
  • Длина наружной части — расстояние от опорной плоскости неподвижного штуцера или фланца до головки. 
  • Длина погружаемой части — расстояние от рабочего конца защитной арматуры до места возможной эксплуатации при температуре верхнего предела измерения. 
  • Диапазон измеряемых температур — интервал температур, в котором выполняется регламентируемая функция термопреобразователя по измерению. 
  • Рабочий диапазон — интервал температур, измеряемых конкретным термопреобразователем и находящийся внутри диапазона измеряемых температур. 
  • Номинальное значение температуры применения — наиболее вероятная температура эксплуатации, для которой нормируют показатели надежности и долговечности. 
  • Показатель тепловой инерции — время, необходимое для того, чтобы при внесении термометра сопротивления или термопары в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое будет в момент наступления регулярного теплового режима. 
  • Допуск — максимально допустимое отклонение от номинальной зависимости сопротивления (термопреобразователя сопротивления) или ЭДС (термопары) от температуры, выраженное в градусах Цельсия. 
  • Чувствительный элемент (ЧЭ) — элемент термопреобразователя, воспринимающий и преобразующий тепловую энергию в другой вид энергии для получения информации о температуре. 
  • Измерительный ток термопреобразователя сопротивления — ток, вызывающий изменение сопротивления термопреобразователя сопротивления при 0°С не более 0,1% его номинального значения.

Термопреобразователи сопротивления, основные технические характеристики

  Тип ТС Класс допуска Допускаемое отклонение сопротивления от номинального значения при 0°С, % Значение W100 Диапазон измеряемых температур, °С Предел допускаемого отклонения сопротивления от НСХ, °С
Номинальное Наименьшее допускаемое
Платиновый (ТСП) А 0,05 1,3850 1,3910 1,3845 1,3905 -220…+850 ±(0,15 + 0,002 |t|)
В 0,1 1,3850 1,3910 1,384 1,390 -220…+1100 ±(0,3 + 0,005 |t|)
С 0,2 1,3850 1,3910 1,3835 1,3995 -100…+300 ±(0,6 + 0,008 |t|)
Медный (ТСМ) А 0,05 1,4260 1,4280 1,4255 1,4275 -50…+120 ±(0,15 + 0,002 |t|)
В 0,1 1,4260 1,4280 1,4250 1,4270 -200…+200 ±(0,25 + 0,0035 |t|)
С 0,2 1,4260 1,4280 1,4240 1,4260 -200…+200 ±(0,5 + 0,0065 |t|)

Схемы соединений внутренних проводников термопреобразователя сопротивления с ЧЭ и их условные обозначения

  1. Принцип работы термопары: подключение преобразователя хромель-алюмень
  2. При использовании схемы 2 (двухпроводная схема) сопротивление соединительных проводов термопреобразователя сопротивления не должно превышать 0,1% номинального значения сопротивления термопреобразователя при 0°С.
  3. В двухпроводной схеме к сопротивлению ЧЭ добавлено сопротивление соединительных проводников, что приводит к сдвигу характеристики при 0°С и уменьшению W100.
  4. На практике эта проблема решается за счет измерительного прибора, к которому подключается термопреобразователь сопротивления, путем задания соответствующих корректировок по смещению и наклону характеристики.
  5. Термопреобразователь с двухпроводной схемой подключения внутренних проводников может подключаться к прибору по трехпроводной схеме с использованием трехжильного кабеля.

При использовании термопреобразователей сопротивления с трехпроводной схемой подключения, прибор автоматически вычитает из сопротивления полной цепи сопротивление соединительных проводов. Сопротивление внутренних проводов и жил кабеля при этом должны быть между собой одинаковы.

Если входная электрическая схема прибора представляет собой мост, в одно плечо которого подключается термопреобразователь сопротивления, то достаточно, чтобы были одинаковы сопротивления двух проводов: 1 и 2. 

Принцип работы термопары: подключение преобразователя хромель-алюмень

Мостовая схема подключения термопреобразователя сопротивления

термопреобразователя сопротивления

Наиболее точные термопреобразователи сопротивления имеют четырехпроводную схему подключения. Для этой схемы не требуется равенство в сопротивлениях проводников.

Читайте также:  Влагозащищенные светильники: класификация и особенности выбора

Каждый конкретный тип термопреобразователя имеет свой более узкий по сравнению с приведенным в таблице основных характеристик диапазон измеряемой температуры.

Это связано с технологией сборки термопреобразователя сопротивления и применяемыми при этом материалами.

Необходимо помнить, что для точного измерения температуры вся погружаемая часть термопреобразователя сопротивления должна находиться в измеряемой среде.

Термопары, основные технические характеристики

Тип термопары Класс допуска Диапазон измеряемых температур, °С Предел допускаемого отклонения от НСХ, °С
Хромель-копелевый ХК (L) 2 -40…+300 +300…+800 ±2,5 ±0,0075 |t|
3 -200…-100 -100…+100 ±0,015 |t| ±2,5
Хромель-алюмелевыый ХА (K) 1 -40…+375 +375…+1000 ±1,5 ±0,004|t|
2 -40…+333 +333…+1200 ±2,5 ±0,0075 |t|
3 -200…-167 -167…+40 ±2,5 ±0,0075 |t|

Термопара хромель-алюмель ХА(K) обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9…10%Сг; 0,6…1,2%Со; алюмель (НМцАК) — 1,6…2.4%Al, 0,85…1,5%Si, 1,8…2,7%Mn, 0.6…1.2%Со.

Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля. Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению.

Учитывая почти линейную зависимость термо-ЭДС термопары хромель — алюмель от температуры в диапазоне 0…1000°С, ее часто применяют в терморегуляторах.

Термопара хромель-копель ХК(L) обладает большей термо-ЭДС, чем термопара ХА(K), но уступает по жаростойкости и линейности характеристики.

Копель (МНМц 43-0,5) — серебристо-белый сплав на медной основе, содержит 42,5-44,0%(Ni+Со), 0,1-1,0%Mn.

Даже в сухой атмосфере при комнатной температуре на его поверхности быстро образуется окисная пленка, в дальнейшем удовлетворительно предохраняющая сплав от дальнейшего окисления.

Номинальные статические характеристики термопар приведены в ГОСТ Р 8.585-2001.

Схемы включения

Рабочий конец термопары погружается в среду, температуру которой требуется измерить. Свободные концы подключаются к вторичному прибору.

Если температура свободных концов постоянна и известна, то подключение может быть сделано медным проводом, а если не постоянна и неизвестна, то оно выполняется специальными удлинительными (компенсационными) проводами. В качестве последних используются два провода из различных материалов.

Провода подбираются так, чтобы в паре между собой они имели такие же термоэлектрические свойства, как и рабочая термопара. При подсоединении к термопаре компенсационные провода удлиняют ее и дают возможность отвести холодный спай до измерительного прибора.

Удлинительные провода

Также смотрите кабели высокотемпературные и термопарные, соединители медные и термопарные, разъемы со склада. 

Стандартные удлинительные провода маркируются. При включении этих проводов в цепь термопар необходимо соблюдать полярность, иначе при измерениях возникает погрешность, равная удвоенной погрешности, которую старались устранить с помощью удлинительных проводов. Промышленность выпускает удлинительные провода в виде скомплектованного (двухжильного) кабеля с жилами различных цветов.

Основные характеристики термопар и удлинительных проводов

Термопара Условное обозна-чение НСХ Материал термоэлектрода Материал удлинительного провода, марка и цвет оплетки ТермоЭДС, мВ при t=100°С, t0=0°C Сопро-тивление   1 м. Ом  для сечения, мм2
положит. отрицат. положит. отрицат. 1 2,5
Платинородий — платина ПП (R, S) Платинородий (90%Pt+10%Rh) Платина Медь П, красный   или розовый Медно-никелевый (99,4%Сu  +0,6%Ni) зеленый 0,64 ± 0,03 0,05 2,5
Платинородий – платино-родий ПР (B) Платинородий (70%Pt+30%Rh) Платинородий (94%Pt+6% Rh) 0,05 0,02
Хромель — алюмель ХА (K) Хромель (89%Ni+9,8% Cr+1% Fe+ 0,2% Mn) Алюмель (94% Ni+2% Al+ 2,5% Mn+1% Si+ 0,5% Fe) Медь М, красный или разовый Константан (42%Ni+58%Cu), коричневый 4,10 ± 0,16 0,52 0,02
Хромель — копель ХК (L) To же Копель (55%Cu+45%Ni+Co) Хромель ХК, фиолетовый   или черный Копель, желтый, оранжевый 6,95 ± 0,2 1,15 0,21
Железо — копель ЖК Железо То же Железо ЖК, белый То же 5,57 0,60 0,46
Медь — копель МК (M) Медь То же Медь МК, красный или розовый То же 4,76 0,50 0,24
Медь — константан МКт (T) Медь Константан (42%Ni+58%Cu) То же Константан, коричневый или черный 4,10 ± 0,16 0,52 0,20
Вольфрам — рений- вольфрам — рений ВР (A1, A2, A3) Вольфрам-рений Вольфрам-рений То же Медно  -никелевыи синий или  голубой 1,33 ± 0,03 0,20 0,21
Вольфрам — молибден ВМ Вольфрам Молибден То же Медно- никелевыи  (99,7%Cu+ 0,3%Ni) 0,40 ± 0,03 0,05 0,04

В связи с высокой стоимостью термопарных кабелей по сравнению, например, с медными при значительной удаленности прибора от датчика более целесообразно в ряде случаев присоединение датчика к прибору осуществлять четырехжильным медным кабелем.

При этом две жилы кабеля подключаются к термоэлектродам термопары, а две — к термосопротивлению, контролирующему температуру свободных концов термопары.

Как в этом случае, так и при подключении термопары непосредственно к зажимам прибора, необходимо обеспечить хороший тепловой контакт термосопротивления с выводами термопары.

При измерении температуры до +600°С более предпочтительным является использование термопары ХК(L), имеющей в 1,5…2 раза большую термо-ЭДС, чем ХА(K).

С другой стороны, для ТП ХК(L) не существует недорогого термокомпенсационного провода. Поэтому при большой удаленности датчика от прибора лучше применять ТП ХА(K) и удлинительный провод МК.

Сравнительные характеристики термопар и термопреобразователей сопротивления

В данной таблице приведены сравнительные эксплуатационные характеристики термопреобразователей сопротивления и термоэлектрических преобразователей («+» — преимущество, «-» — недостаток).

Тип преобразователя Характеристики
  • Диапазон
  • измеряемой
  • температуры
Точность измерения Инерционность Цена преобразователя Цена подсоединения преобразователя
ТП + + +
ТС + +

Также смотрите термопреобразователи сопротивления, термопары, датчики температуры с токовым выходом, чувствительные элементы нашего производства. А также кабели высокотемпературные и термопарные, соединители медные и термопарные, разъемы со склада. 

статьи из разделов:• Измерение температуры и влажности, датчики температуры и влажности• Автономные регистраторы• Автоматизация, приборы для автоматизации• Медицинские приборы

Источник: https://RelSib.com/articles/termopreobrazovateli-soprotivleniya-i-termopary

Принцип действия термопар

Термопары самое известное средство измерения для многих сфер деятельности, таких как, промышленность, медицинские лаборатории, жилые дома и научные лаборатории. Применяются они для измерения температуры.

Это связано с тем, что термопары имеют высоким диапазон измерения(от -270 до + 2500С), отличную точность, высокую надежность, низкую цену и свободную заменяемость.

Для корректного применения нужно понимать ее принцип действия и структуру.

Принцип действия и структура термопар

Состоит термопара из двух проводников и трубки, которая служит защитой для термоэлектродов.

 Термоэлектроды состоят из неблагородных и благородных металлов, чаще всего из сплавов, закрепленные друг с другом на одном конце(рабочий конец или горячий спай), таким образом они образуют одну из частей устройства.

Другие концы термопары (свободные концы или холодный спай) соединены с прибором измерения напряжения. Посередине двух несоединенными выводами возникает ЭДС, величина зависит от температуры рабочего конца.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Одинаковые термопреобразователи объединенные параллельно замыкают цепь, по правилу Зеебека, мы рассмотрим далее это правило, между ними образуется контактная разность потенциалов или термоэлектрический эффект, при соприкосновении на проводниках появляются электрические заряды, между их свободными концами возникает различие потенциалов, и он зависит от разности температур. Только тогда, когда температура между термоэлектродами одинакова, разница потенциалов приравнивается к нулю.

Например: Помещая спай с различными от нуля коэффициентами, в две кипящие кастрюли с жидкостью, температура первой 50, а второй 45, то разность потенциалов будет равна 5.

Разность потенциалов определяется разностью температур источников. Так же зависит материал из которого сделаны электроды термопары. Пример: У термопары Хромель-Алюмель температурный коэффициент равен 41, а у Хромель-Константан коэффициент равен 68.

Явление Зеебека

Состоит в следующем.

Если в замкнутом контуре из двух разнородных проводников, а лучше полупроводников так, как эффект сильнее выражен для полупроводников, поддерживать места соединения этих проводников, обще принято называть, спаи, при разных температурах, то в такой цепи пойдет ток. Направление тока зависит от того какая из температур, какого спая выше. При одной разности в одном направлении, при другой разности в другом.

Это устройство, будучи разрезанным в одном из мест используется в качестве термопары, датчика температуры.

В схеме 2, далее, будет показано спай 1, мы будем нагревать или охлаждать, а другой спай внутри гальванометра, который находится при комнатной температуре.

В зависимости от того какая будет температура спая Т1 выше комнатной или ниже, стрелка гальванометра, будет отклоняться либо в одну, либо в другую сторону.

Если в цепи термопары обе проволоки из одного материала то ничего происходить не будет.

Проверить это очень просто, возьмите две медные проволоки с изоляцией, меры безопасности никто не отменял, подсоедините их одними концами к гальванометру, а другими скрутите вместе (но лучше спаять), и начните нагревать, так же можно опустить в воду с кусочками льда. Если вы взяли одинаковые проволоки, то стрелка прибора останется на нуле.

Но если вы возьмете разные проволоки и точно так же подсоедините их к прибору, а другие концы скрутите. И после этого будете нагревать или охлаждать, оголенные концы проводов, то вы сможете наблюдать, как и в какую сторону будет отклоняться стрелка гальванометра.

Принцип работы термопары: подключение преобразователя хромель-алюмень

Методы подключения

Есть несколько методов включения преобразователя, но мы рассмотрим самые распространенные: простой и дифференциальный. Простой — измерительный прибор включается напрямую к двум термопарам. Дифференцированный — применяются проводники с разными соотношениями термо-ЭДС, соединённые в двух концах, а измерительный прибор подключается в разрыв одного из проводников.

Во время дистанционного включения, ставятся удлинительные либо компенсационные провода. Удлинительные провода создаются из тех же металлов, что и термоэлектроды, но с разными размерами. Компенсационные — изготовляются из благородных металлов, но их состав, отличается от состава термоэлектродов.

Источник: https://termopara.org/spravka/princip-deystviya

Ссылка на основную публикацию
Adblock
detector