Аминовая очистка газа от сероводорода: схема установки и принцип действия

Сероводород, соединения меркаптановой серы и углекислый газ являются наиболее распространенными «загрязнителями» углеводородного сырья.

Ввиду их высокого коррозионного воздействия на выполненные из углеродистой стали оборудование и трубопроводы, эти соединения должны быть удалены из сырьевого потока, если их концентрация превышает допустимую.

Удаление соединений сероводорода и углекислого газа водными растворами аминов – наиболее “популярный” метод с более чем пятидесятилетней историей.

Область применения установок аминовой очистки:

  • Очистка газа от H2S, CO2 и частично от соединений меркаптановой серы
  • Очистка сжиженных углеводородных газов (СУГ)
  • Удаление CO2 из синтез-газа
  • Очистка дымовых газов и получение СО2

Аминовая очистка газа от сероводорода: схема установки и принцип действия

Рис. 1 3D-модель установки аминовой очистки

Аминовая очистка газа от сероводорода: схема установки и принцип действия

Рис. 2 Чертеж установки аминовой очистки

Выбор типа амина

Тип и концентрация водного раствора амина – критически важные параметры для определения всего процесса очистки. Ниже приведены типичные массовые концентрации растворов аминов.

Моноэтаноламин (МЭА): 20% для удаления CO2 и H2S, 32% для удаления преимущественно СО2.

Диэтаноламин (ДЭА): 20. 25% для удаления H2S и CO2.

Метилдиэтаноламин (МДЭА): 30. 55% для селективного удаления H2S в присутствии CO2, удаления H2S и CO2 при использовании активатора (пиперазин).

Дигликольамин (ДГА): 50 % для удаления H2S, CO2 и до 70% «легких» меркаптанов.

Технологическая схема

Аминовая очистка газа от сероводорода: схема установки и принцип действия

Рис. 3 Принципиальная схема установки аминовой очистки

Газ подается в нижнюю часть колонны-абсорбера (1). Поднимаясь вверх по колонне, газ контактирует с раствором амина. В качестве контактных устройств применяются либо клапанные тарелки, либо неструктурированная насадка. Выбор типа контактного устройства определяется для каждого конкретного случая в отдельности.

Количество теоретических ступеней контакта для типичного абсорбера – 7. Пройдя контактную часть абсорбера, газ поступает в секцию каплеуловителя. Назначение данной секции – максимально возможное снижение величины уноса раствора амина с потоком очищенного сырья. Далее, очищенный газ отводится за пределы установки.

Колонна-абсорбер стандартно оборудована датчиками температуры для отслеживания изменения температуры по высоте аппарата.

Раствор амина по сигналу автоматического контроллера уровня отводится из нижней части колонны посредством автоматического клапана.

При снижении давления из раствора амина выделяются фракции легкокипящих углеводородов. Разделение образовавшейся смеси происходит в сепараторе (2).

Выделившийся в процессе сепарации газ отводится из верхней части аппарата в факельную систему сжигания «кислых» газов или в блок термической деструкции.

После сепарации раствор амина проходит механическую очистку в последовательно расположенных мешотчатом (3) и угольном (4) фильтрах.

Далее, очищенный от механических примесей раствор насыщенного амина поступает в теплообменник (5), где происходит нагрев за счет теплообмена с потоком регенерированного амина из ребойлера (7).

Из теплообменника (5) раствор амина подается в колонну-десорбер (6). Подвод тепла, необходимого для процесса регенерации, происходит в ребойлере (7).

Источником тепла может быть как прямой подогреватель (газовая горелка, термоэлектрический нагреватель), так и косвенный (пар или горячее масло).

АВО рефлюкса (8) обеспечивает частичную конденсацию паров из колонны-десорбера, формируя тем самым поток рефлюкса.

Регенерированный амин отводится из переливной секции ребойлера (7) и подается в теплообменник (5) для нагрева потока насыщенного амина, после чего подпорным насосом подается в секцию АВО амина (12).

Охлажденный регенерированный амин подается в колонну-абсорбер нагнетательным насосом (13).

Технологическое оформление установок аминовой очистки газов

Аминовая очистка газа от сероводорода: схема установки и принцип действия

Рубрика: Технические науки

Дата публикации: 14.01.2015 2015-01-14

Статья просмотрена: 1189 раз

Библиографическое описание:

Очистка газа и воздуха от сероводорода, методы, принципы, системы, фильтры и установки для удаления H2S — ПЗГО

Завод газоочистной аппаратуры ООО «ПЗГО» тепло встречает на своем официальном сайте всех Посетителей и Клиентов, заинтересованных в методах, фильтрах и системах для безупречной реализации такого процесса как очистка газа от сероводорода.

Более 30 лет мы поставляем на предприятия России и Зарубежья современные блочные установки и фильтрационные системы комплексной сераорганической очистки собственной разработки, изготовленные по уникальным патентам «ПЗГО».

Индивидуальный подход к каждой заявке:

  • Производительность фильтров – от десятков кубических метров до десятков тысяч кубометров в час при эффективности нейтрализации в 99-100%;
  • Индивидуальное проектирование под строгое соответствие выбросов установленным российским или международным техническим и санитарно-гигиеническим нормативам ГОСТ, СанПин, ГН, ISO, IDT, MOD, NEQ;
  • Любые сферы промышленности связанные с потребностью в нейтрализации или утилизации сероводорода: химия, теплоэнергетика (ТЭС, ТЭЦ, КЭС, ГРЭС), добыча и переработка нефти и природного газа, черная и цветная металлургия, лабораторные, аналитические исследования;
  • Предельная надежность, безотказность и стабильность работы оборудования в любых условиях;
  • Доступная цена установок при европейском качестве продукции, гарантия до 20 лет.

По любым вопросам, касающимся проектирования, производства, покупки, доставки и монтажа сероочистного оборудования, пожалуйста, обращайтесь в Клиентский отдел «ПЗГО» или заполняйте Анкету Заказчика.

Задать вопрос или запросить цену на изготовление оборудования сероочистки

Негативные эффекты сероводорода и необходимость очистки газовоздушных сред от H2S

Сернистый водород – одно из простых и широко распространенных соединений, которое в небольших количествах встречается повсеместно. Велика роль эндогенного сероводорода в живых организмах, где он выполняет множество важных нейробиологических функций. Используется он и в лечебных ваннах, в микроскопических объемах благотворно влияя на организм человека.

Впрочем, когда речь идет о такой технологической процедуре как мокрая или сухая очистка воздуха от сероводорода, ясно – что высокая концентрация данного соединения несет лишь сугубо негативные последствия для здоровья, жизни и экологии планеты.

  • Последствия кислотных дождей, содержащих сернистые компоненты
  • В значительных объемах чистый сероводород и его производные образуются на гидрометаллургических фабриках, предприятиях органического синтеза, аграрных и химических заводах – при производстве серной кислоты, серы, селитры, серосодержащих удобрений.
  • В составе дымовых газов H2S – постоянный спутник всех без исключения выбросов от сгорания органического сырья – наряду с оксидами серы, окислами азота, соляной кислотой, фенолами, монооксидом углерода.
  • Очистка биогаза от сероводорода и углекислого газа – одна из насущных проблем, стоящих перед операторами промышленных биометановых электростанций.

В опасной концентрации запах газообразного дигидросульфида – тошнотворный «аромат» гниющего мяса или стухших яиц – практически мгновенно перестает ощущаться. Это таит огромную опасность, поскольку H2S быстро парализует обонятельные нервы, и человек продолжает вдыхать из воздуха вредное соединение, уже не ощущая его запаха.

Установки очистки газа от сероводорода востребованы также и в силу его разрушительного воздействия на технические коммуникации. Индивидуально или в составе дымов, сульфид водорода и другие сернистые соединения вызывают сильнейшую коррозию трубопроводов, резервуаров, фитингов, компрессоров и любого другого оборудования, не обладающего специальной антикоррозийной защитой.

Помимо этого, сернистый водород пожаро- и взрывоопасен: 4%-ое его присутствие в воздушной среде может вызвать катастрофические последствия. Так, 27 ноября 2018 года на химическом заводе в восточном Китае, (провинция Хэбэй), по крайней мере, 23 человека погибли и более 22 получили тяжелые ранения в результате самопроизвольного взрыва H2S.

Двойной удар вызывает сероводород, присутствующий в отходящих дымовых газах.

С одной стороны, на пути следования по тракту он негативно воздействует на коммуникационные, технические и выхлопные системы предприятий, с другой – выбрасывается в атмосферу, после чего может трансформироваться (через окисление) в серную кислоту и выпадать в виде кислотных дождей, опасность которых для экологии сложно преувеличить.

Симптомы отравления дигидросульфидом

Кстати: сернистые соединения, благодаря своему острому неприятному запаху, используются как маркеры утечки газа. В России обычно используют этилмеркаптан (этантиол). Во многих зарубежных странах в целях одоризации в бытовой (cooking gas) добавляют именно сероводород.

Принципы и методы очистки

На сегодняшний день методов очистки газов от сероводорода открыто (и отлажено) более двух десятков. И если одни узконаправленно разработаны под конкретные лабораторные задачи, то другие нашли широкое применение в комбинированном очищении воздушных сред от кислых соединений.

Сухая адсорбция

Один из первых – но распространённых и по сей день – сухих адсорбционных способов предполагает использование т.н. болотной руды, (лимонит, бурый железняк или гидрат окиси железа) – 85-90% Fe2O3 и 10-15% воды.

Очистная каталитическая установка представляет собой несколько чугунных или стальных ящиков, соединенных газоходами параллельно-последовательным образом.

На решетках каждого ящика, в 3-4 яруса, уложен адсорбент – измельченный бурый железняк (болотный лимонит), перемежающийся с деревянной щепкой.

Для достижения приемлемого КПД сероводород должен находиться в контакте с лимонитом не менее 5 минут.

  1. Процесс адсорбции на примере активированного угля
  2. Среди плюсов – простота и дешевизна адсорбента, высокая степень улавливания.
  3. Несмотря на хорошую степень захвата, такие установки обладают множеством недостатков, среди которых селективность газоочистки, громоздкость, необходимость частой регенерации (или перезарядки) адсорбента, избыточное пневматическое сопротивление, низкая скорость нейтрализации, ограничение по температуре очищаемого потока в + 30 °C.
Читайте также:  Ошибки газового котла navien: как по коду найти неисправность и провести ремонт

Оборудование нашего завода позволяет работать с сильнозагрязненными потоками температуры до 250 градусов Цельсия и выше.

Адсорбционные башни и блоки

Преемник предыдущей технологии – башенный способ, в котором адсорбционные ящики заменены одинарной колонной, что хоть и дает некоторую экономию места, но не лишает конструкцию остальных недостатков.

Хорошо показывает себя в каталитическом способе и активированный уголь, позволяющий в присутствии кислорода экстрагировать из сероводорода элементарную серу почти абсолютной чистоты (до 99%), но он – так же, как и лимонит – требует постоянной регенерации или перезагрузки (после ≈ 100 циклов регенерации) и проявляет свойства высокой сорбционной избирательности. Неприменим для обеззараживания комплексных дымовых выбросов, образующихся в результате сгорания газобензиновых углеводородов.

Сухой адсорбционный фильтровочный комплекс

Исследования показывают, что даже минимальное наличие примесей в обрабатываемом потоке радикально влияет на выбор способа газоочистки.

Практически вышедшим из употребления подходом является сухая нейтрализация сульфида водорода гашеной известью и оксидом железа.

Рассматривая сухой катализ в применении к нейтрализации дымовых потоков, адсорбционный метод утилизации сероводородных включений, в силу селективности и неспособности к обработке сильнозагрязненных сред, обладает низкой эффективностью и чрезмерной ресурсозатратностью.

Мокрые абсорбционные и хемосорбционные методы газоочистки

Концентрируя все силы на проблеме загрязнения воздушного бассейна дымовыми выбросами, завод «ПЗГО» предлагает к проектированию, изготовлению и приобретению современные, компактные, безотказные и недорогие системы сероочистки мокрого насадочного типа, которые лишены всех недостатков, свойственных другим технологиям промышленного улавливания дымов.

Сиборд-процесс

Впервые работающая промышленная установка очистки газа от дигидросульфида была представлена производственной компанией «Koppers Company», (Пенсильвания, США), в 20-ых годах прошлого века. Базовый принцип абсорбции определялся обратимой реакцией сернистого водорода с раствором карбоната натрия, (ориг. Seaboard Process).

По-видимому, слово Seaboard (рус. побережье, береговая линия) является отсылкой к значительной карбонатной жесткости морской и океанской воды, в частности, к присутствию в ней больших объемов Na2CO3.

Процесс наглядно можно представить так: Na2CO3 + H2S ⇌ NaHCO3 (гидрокарбонат натрия) + NaHS (гидросульфид натрия)

Сиборд-процесс, как метод, определил главный базис мокрой реагентной нейтрализации, который сразу после этого начал свое стремительное развитие. Общая концепция оборудования оставалась неизменной, но исследователи начали многочисленные эксперименты с химическими агентами, (поскольку с водой в обычных условиях сероводород реагирует слабо, образуя т.н. слабокислую сероводородную воду).

Канадский газоочистной комплекс, использующий сиборд-процесс

Впрочем, даже слабые кислые свойства дигидросульфида позволяют рассматривать щелочные растворы в качестве реакционного материала. Эта особенность может использоваться не только при проектировании систем, но и позже – на этапе нейтрализации кислых промышленных стоков после оборудования, занятого в улавливании дигидросульфида.

Феноксид (фенолят) натрия

В 30-ых годах прошлого века, в рамках той же компании «Koppers Company», был проработан метод, эффективность которого несколько превосходила аналогичную у сиборд-процесса. В качестве жидкого абсорбента в фильтрационной установке использовался каустик – феноксид натрия C6H5ONa. Технология позволяла подходить к улавливанию сероводорода более гибко и менее селективно.

В зависимости от количественной доли H2S (и других кислых компонентов), содержащихся в коксовом, природном или попутном нефтяном газе, можно было регулировать концентрацию оксидефенолята натрия, тем самым добиваясь лучших результатов газоочистки. Вдобавок, обратимость реакции позволяла на дальнейших этапах извлекать из отработанных шламов сульфид водорода и направлять его на другие нужды.

Позже феноксиду натрия нашли и другие важные применения. Сегодня, под названием «Ф-5», он нередко используется в лакокрасочной промышленности в качестве антисептика / дезинфектора для борьбы с плесенью, в отношении которой он проявляет исключительные антагонистические свойства.

Аминовая очистка газа от сероводорода

В нефтегазодобывающей и перерабатывающей отраслях для задержания и / или утилизации H2S, (обычно в тандеме с CO2), в качестве жидкого хемосорбента часто используются амины.

Представляющие собой сильные основания, амины являются производными аммиака и наследуют многие из его свойств, в том числе, – образование донорно-акцепторных связей (молекула азота может заменяться на водород без образования промежуточных связей).

В зависимости от индивидуального характера легкого углеводородного сырья, (а также синтез-газа, меркаптановых соединений), может использоваться моноэтаноламин (МЭА), метилдиэтаноламин (МДЭА), диэтаноламин (ДЭА), дикликольамин (ДГА) и другие амины.

Газоперерабатывающий комплекс «Лукойл», использующий аминную пурификацию

В целом, процесс де- и реактивации дигидросульфида с помощью аминового способа предполагает использование масштабной, сложной, многоступенчатой технологической платформы с высоким уровнем компьютеризации и синхронизации всех подсистем, что целесообразно только при тщательном экономическом просчете всех аспектов газоочистных мероприятий.

Даже современные системы обладают рядом недостатков, среди которых ограничение температуры потока (до ≈ + 45 °C), вспенивание аминового раствора, брызгоунос аминов из секции очистки, чувствительность к аэрозолям, чрезвычайная сложность и высочайшая стоимость комплексов (требуются не только абсорберы, но и регенераторы, холодильники, ребойлеры, сепараторы, нагреватели, пеногасители и множество другого вспомогательного оборудования).

Мокрые насадочные скрубберы

Наиболее перспективным методом очистки запыленных и задымленных газовоздушных сред от кислых компонентов сегодня является использование мокрых насадочных скрубберов / абсорберов.

Задержание нежелательных примесей в данном типе оборудования происходит в межфазном кипящем псевдоожиженном слое, образующемся на поверхности насадочных тел. Причем, даже использования в качестве орошающего реагента обычной технической воды, как правило, достаточно для фиксации таких показателей КПД комплексной дымоочистки, которые недостижимы для других типов аппаратов схожего назначения.

  • Принцип работы мокрого насадочного скруббера. Уменьшенный макет аппарата демонстрирует взаимодействие воздушных и жидкостных сред внутри колонны через образование кипящего межфазного слоя
  • Среди ключевых особенностей агрегатов: эффективность обезвреживания выбросов до 99-100%, экономическая доступность, компактность, надежность, безотказность, пневмогидродинамическая стабильность, возможность обработки высокотемпературных сред, а также параллельная работа устройств в качестве пылеулавливающих агрегатов с захватом пылей дисперсностью от 0,5 µm.
  • Пожалуйста, ознакомьтесь со всеми преимуществами предлагаемых ООО «ПЗГО» аппаратов в блоке статей нашего сайта, в каталоге аппаратов мокрой газо- и дымоочистки или обратившись напрямую в Клиентский отдел нашего предприятия.
  • Перейти в каталог продукции

Термическая диссоциация и другие способы

Известно, что сернистый водород при нагреве до около 400 градусов диссоциирует (разлагается) на элементарный водород и серу. Из-за высокой взрывоопасности H2S эта методика используется очень ограниченно и лишь с небольшими объемами очищаемых сред.

Помимо вышеописанных, можно встретить упоминание и других методик нейтрализации H2S: феррокс-процессы (с использованием железа), гидродинамический захват Куэтта-Тейлора, калиево-фосфатные (растворы «Alkacid» от немецкой компании «BASF»), никелевый и другие способы, многие из которых сегодня представляют лишь исторический интерес.

Краткий рейтинг технологий в рамках применимости к очистке отходящих дымовых газов

Технология Особенности и комментарии
Мокрые скрубберы / насадочные абсорберы КПД до 100%, легкость в обслуживании, низкие эксплуатационные траты, полная автоматизация, компактность, экономическая доступность, неограниченный спектр применения установок, параллельная работа в качестве уловителя сажи, копоти, пылей, охлаждение входящего потока
Сухая каталитическая адсорбция Необходимость регенерации адсорбента, неспособность обрабатывать сильно загрязненные, горячие потоки, высокая селективность процессов деактивации примесей при достаточном выборочном КПД устройств
Аминовая пурификация Чрезвычайная сложность, высокая стоимость, узкая направленность (промышленная нефтегазопереработка), масштабность, необходимость в широкой номенклатуре вспомогательных систем

Расчет, изготовление, продажа, доставка и монтаж

По любым вопросам, касающимся проектирования, изготовления и приобретения агрегатов, пожалуйста, связывайтесь с ООО «ПЗГО» любым удобным Вам способом: по телефону, через заполнение Анкеты Заказчика или лично – посетив Клиентский отдел завода.

Осуществим быструю доставку установок по России, СНГ, Европе, Азии. При необходимости проведем монтаж, пусконаладочные работы и введем аппараты в Ваш производственный цикл. Возможна модернизация. Обучим Ваш персонал. Полный комплект технической и бухгалтерской документации. Гарантия производителя.

ООО «ПЗГО» – дышите легко!

Очистка углеводородных газов этаноламинами ⋆ PumpUnion Москва —

В углеводородном сырье содержатся такие серосодержащие примеси, как сероводород, серооксид углерода, сероуглерод, меркаптаны, а в газовом конденсате – также сульфиды и дисульфиды. Их содержание нежелательно (они вызывают коррозию оборудования и отравляют катализаторы), и их удаляют.

Читайте также:  Как сделать водородный генератор для дома своими руками

Меркаптаны и сульфиды при гидроочистке превращаются в сероводород, который легко отделить при помощи абсорбции этаноламинами.

Наиболее известными этаноламинами, используемыми в процессах очистки газа от сероводорода и углекислого газа являются:

  • моноэтаноламин (МЭА)
  • диэтаноламин (ДЭА)
  • триэтаноламин (ТЭА)
  • дигликольамин (ДГА)
  • диизопропаноламин (ДИПА)
  • метилдиэтаноламин (МДЭА)

Наибольшее практическое применение получили моно- и диэтаноламин. Использование ДЭА особенно целесообразно в тех случаях, когда в исходном газе наряду с Н2S и СО2 содержатся COS и СS2, которые вступают в необратимую реакцию с МЭА, вызывая его значительные потери. Для селективного извлечения Н2S в присутствии СO2 используют третичный амин – метилдиэтаноламин.

В физических процессах извлечение кислых компонентов из газа происходит за счет физического растворения их в применяемом абсорбенте. При этом, чем выше парциальное давление компонентов, тем выше их растворимость. Из физических абсорбентов промышленное применение для очистки газов нашли такие, как:

  • метанол
  • N-метилпирролидон
  • алкиловые эфиры полиэтилен гликоля
  • пропиленкарбонат

Присутствие гидроксильной группы снижает давление насыщенных паров и повышает растворимость амина в воде, а аминогруппа придает водным растворам щелочность, необходимую для взаимодействия с Н2S и СO2, которые в водной среде диссоциируют с образованием слабых кислот.

Алканоламины – это бесцветные, вязкие, гигроскопичные жидкости, смешивающиеся с водой и низкомолекулярными спиртами во всех соотношениях; они почти нерастворимы в неполярных растворителях.

Их применяют, как правило, в виде водных растворов. Концентрация амина в растворе может изменяться в широких пределах, ее выбирают на основании опыта работы и по соображениям коррозии оборудования.

Алканоламины, будучи основаниями, легко вступают в реакцию с кислыми примесями, образуя ассоциаты. Таким образом, кислые примеси накапливаются в жидкости.

Отработанные этаноламины легко регенерируются, при нагреве отдавая кислые газы. Процесс Клауса позволяет переработать сероводород в товарный продукт – элементарную серу.

Часть из них на стадии регенерации абсорбента разрушается и снова выделяет алканоламин, другая часть нерегенерируется, что является одной из причин потерь амина. Наибольшее количество нерегенерируемых соединений характерно для первичных алканоламинов.

Поступающий на очистку газ проходит восходящим потоком через абсорбер навстречу потоку раствора. Насыщенный кислыми газами раствор, выходящий с низа абсорбера, подогревается в теплообменнике регенерированным раствором из десорбера и подается наверх его.

Способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа

Изобретение относится к способам очистки аминового раствора, применяемого для выделения из природного газа сероводорода и углекислого газа, и может быть использовано в нефтегазоперерабатывающей промышленности.

Очистку аминового раствора процесса очистки газов от сероводорода и углекислого газа ведут путем экстракции из него полифениловым эфиром пенообразующих веществ при объемном соотношении «полифениловый эфир — аминовый раствор», равном 1:50-300.

Отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим выделением пенообразующих веществ в осадок. После этого полученную смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки.

Изобретение позволяет поддерживать допустимый уровень содержания пенообразующих веществ в циркулирующем аминовом растворе, при этом обеспечивает восстановление экстракционных свойств полифенилового эфира и его повторное использование в процессе очистки аминового раствора. 1 ил., 2 табл.

Изобретение относится к способам очистки аминового раствора, применяемого для выделения из природного газа сероводорода и углекислого газа, и может быть использовано в нефтегазоперерабатывающей промышленности.

Вспенивание аминовых растворов — одна из серьезных проблем при эксплуатации установок очистки газа. Вспенивание приводит к нарушению режима работы установок, ухудшению качества очищенного газа и, как следствие этого, к необходимости снижения производительности установок по газу.

Основной причиной вспенивания являются примеси, поступающие с сырым газом и попадающие в абсорбент (жидкие углеводороды, пластовая вода, механические примеси, ингибиторы коррозии, различные ПАВ, смолистые вещества и др.).

Пенообразователями также являются смазочные масла, продукты коррозии и деградации амина.

Наиболее надежным способом борьбы со вспениванием является вывод примесей из системы. Этот метод более надежен, чем применение антивспенивателей, действие которых кратковременно.

Некоторые антивспениватели хорошо гасят пену в момент ее образования, но при добавлении их в раствор до образования пены могут приводить к ее стабилизации.

Иногда чрезмерное количество антивспенивателя также может привести к вспениванию.

В настоящее время задача очистки растворов аминов (вывода пенообразуюших веществ) в основном решается путем установки узла фильтрации. Как правило, он состоит из двух патронных и одного угольного фильтра.

Патронные фильтры предназначены для очистки циркулирующего раствора от механических примесей, к которым можно отнести продукты коррозии оборудования и трубопроводов и частицы угля, уносимого раствором из угольного фильтра-адсорбера.

Объем раствора, выводимого на фильтрацию от пенообразующих веществ, составляет 15-20% объема циркуляции в зависимости от типа применяемого амина и технологической схемы процесса.

Часть аминового раствора подвергается очистке от растворимых примесей (балластовых соединений) на угольном фильтре-адсорбере, которые удаляют из раствора тяжелые углеводороды [Н.М.Бутина, Г.С.Широкова. Эффективное использование аминных ресурсов — ключ к рентабельности производства. Наука и прогресс. 2006, № 9, с.95-96].

Основными недостатками данного способа являются недостаточно высокая степень извлечения пенообразующих примесей в случае резкого повышения вспенивания аминового раствора, что обусловлено заданными значениями пропускной способности угольных фильтров, достаточно быстрая деактивация используемого активированного угля, приводящая к необходимости его регенерации путем пропарки водяным паром в атмосферу, а с истечением срока службы угля — замены на новый, что способствует образованию отходов отработанного угольного адсорбента (отвалов), загрязняющих окружающую среду.

Наиболее перспективным методом, по мнению авторов, является экстракционный, позволяющий оперативно реагировать на поступление в раствор пенообразующих веществ путем увеличения соотношения «аминовый раствор — экстрагент», а также за счет увеличения доли поглотительного раствора, подаваемого на экстракционную очистку.

Наиболее близким к заявляемому по совокупности существенных признаков и достигаемому результату является способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ [А.М.Спасенков, О.П.Лыков, В.И.Лазарев.

Экстракционный метод устранения вспенивания алканоламиновых растворов на установках очистки газов от H2S и CO2. Нефтепереработка и нефтехимия. 2005, № 11, с.37-39]. Авторами экспериментально подтверждена эффективность полифенилового эфира по удалению из циркулирующего аминового раствора веществ, способствующих образованию пены.

Полифениловый эфир марки 5Ф-4Э [(C6H5OC6H5)n, плотность 1,2 г/см3, температура кипения 200°С] обладает высокой селективностью, достаточно высокой разностью плотностей с аминовым раствором (плотность раствора в среднем 1,072-1,078 г/см3), минимальной растворимостью в воде и нерастворимостью в нем аминов, что позволяет четко разделять аминовый раствор от пенообразующих веществ.

Задачей заявляемого изобретения является разработка процесса регенерации полифенилового эфира для его многократного использования и определение оптимальных соотношений применяемых реагентов.

Поставленная задача решается тем, что в способе очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ экстракцию ведут при объемном соотношении «полифениловый эфир — аминовый раствор», равном 1:50-300, отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим отделением пенообразующих веществ в осадок, после чего смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки.

Метилэтилкетон (2-бутанон) CH3COC2H5, бесцветная легколетучая жидкость, температура кипения 79,6°С, плотность при 20°С составляет 0,805 г/см3, смешивается с органическими растворителями.

Применяют метилэтилкетон в качестве растворителя перхлорвиниловых, нитроцеллюлозных, полиакриловых лакокрасочных материалов и клеев, типографских красок, депарафинизации смазочных масел и обезмасливания парафинов.

Авторами экспериментально установлено, что при смешивании полифенилового эфира, насыщенного пенообразующими веществами, с метилэтилкетоном происходит повторная жидкостная экстракция, но теперь уже метилэтилкетон выделяет из насыщенного раствора полифениловый эфир благодаря их неограниченной взаиморастворимости, а пенообразующие вещества при этом выпадают в осадок. Образовавшаяся смесь полифенилового эфира с метилэтилкетоном легко разделяется в отпарной колонне за счет значительной разности их температур кипения.

  • Выбранное объемное соотношение полифенилового эфира к аминовому раствору обусловлено тем, что чрезмерное разбавление смеси ниже объемного соотношения 1:300 нерационально, поскольку экстракционная активность полифенилового эфира значительно снизится, а объемное соотношение свыше 1:50 экономически нецелесообразно.
  • Выбранное объемное соотношение полифенилового эфира к метилэтилкетону обусловлено тем, что объемное соотношение ниже 1:3 будет приводить к неоправданному расходу метилэтилкетона, а выше 1:1 недостаточно для их полного взаиморастворения и отделения смеси от выделившихся в осадок пенообразующих веществ.
  • Технический результат, получаемый от определения оптимального объемного соотношения полифенилового эфира к аминовому раствору, состоит в обеспечении возможности путем изменения объемного соотношения регулировать в широких пределах экстракционные свойства полифенилового эфира в зависимости от состава аминового раствора и концентрации присутствующих в нем пенообразующих веществ, а также в возможности при необходимости увеличения доли циркулирующего аминового раствора, подаваемого на экстракционную очистку, до 50% от всего объема (против 15-20% при очистке через угольные фильтры).
Читайте также:  Устройство газовой горелки, запуск и регулировка пламени, рекомендации по разборке и хранению

Технический результат, получаемый от того, что полифениловый эфир подвергается регенерации, включающей его смешивание с метилэтилкетоном в объемном соотношении, равном 1:1-3, последующее отделение пенообразующих веществ в осадок и разделение смеси полифенилового эфира с метилэтилкетоном в отпарной колонне, состоит в восстановлении экстракционных свойств полифенилового эфира и его повторное использование в процессе очистки аминового раствора, т.е. в создании замкнутого цикла циркуляции экстрагента, а следовательно, в увеличении длительности его использования.

На чертеже приведена схема установки, реализующей предлагаемый способ.

Установка содержит емкость хранения амина 1 с насосом 2, аппарат воздушного охлаждения 3, фильтр для очистки от механических примесей 4, емкость хранения полифенилового эфира 5 с насосом 6, теплообменник 7, разделители 8 и 9, емкость хранения метилэтилкетона 10 с насосом 11, отстойник 12, отпарную колонну 13.

Аминовый раствор с температурой 90-100°С из емкости ее хранения 1 подается насосом 2 на охлаждение в аппарат воздушного охлаждения 3, где он охлаждается до температуры 60°С, и поступает в фильтр для очистки от механических примесей 4.

В поток очищенного от механических примесей раствора амина впрыскивается полифениловый эфир, подаваемый из емкости его хранения 5 насосом 6.

Полученная смесь аминового раствора с полифениловым эфиром проходит сначала теплообменник 7, охлаждая раствор метилэтилкетона, и поступает в разделитель 8, снабженный внутренними перегородками, в котором из-за разности плотностей происходит разделение аминового раствора и полифенилового эфира, насыщенного пенообразующими примесями. Очищенный раствор амина из верхней части разделителя отводится в емкость его хранения 1. На этом цикл по экстракции раствора амина заканчивается.

Затем начинается цикл регенерации полифенилового эфира от пенообразущих веществ. В поток насыщенного полифенилового эфира, выводимого с низа разделителя 8, впрыскивается метилэтилкетон, подаваемый из емкости его хранения 10 насосом 11. Полученная смесь поступает в разделитель 9.

В разделителе 9 полифениловый эфир растворяется в метилэтилкетоне и полученная смесь располагается в верхней части разделителя, в то время как пенообразующие примеси выпадают в осадок. Пенообразующие примеси выводятся из нижней части разделителя 9 в отстойник 14 для дальнейшей их утилизации.

Смесь полифенилового эфира с метилэтилкетоном поступает в среднюю часть отпарной колонны 13. Разделение полифенилового эфира и метилэтилкетона происходит за счет изменения фазового состояния смеси. Колонна снабжена тарелками для более эффективного разделения смеси.

В кубовой части колонны нагрев осуществляется раствором амина, подаваемым на очистку в установку из емкости хранения 1 с температурой 85-100°С.

Отпаренный метилэтилкетон с температурой 85°С отводится из верхней части колонны 13 через теплообменник 7, где он охлаждается и конденсируется, в емкость его хранения 10 для дальнейшего использования. Полифениловый эфир стекает по тарелкам и с температурой 90°С выводится из кубовой части отпарной колонны 13 в емкость его хранения 5 для дальнейшего использования.

Пример. Проводили лабораторные исследования процесса экстракции с целью определения оптимальной температуры экстракции и объемного соотношения экстрагент — аминовый раствор. В качестве исходного аминового раствора брали пробы из регенерированного потока амина с промышленной установки 1У370.

Водный аминовый раствор содержит в среднем 25-35% смеси ДЭА и МДЭА и примеси пенообразующих веществ (плотность раствора 1,072-1,078 г/см3).

В качестве экстрагента использовали полифениловый эфир марки 5Ф-4Э [(C6H5OC6H5)n, плотность 1,2 г/см3, температура кипения 200°С], который обладает минимальной растворимостью в воде и нерастворимостью в нем аминов. В термостатированную делительную воронку вводили 10 мл исходного аминового раствора.

Пробу прогревали до заданной температуры, после чего добавляли 1 мл полифенилового эфира, нагретого до той же температуры. Полученную смесь встряхивали в течение 4 минут для ускорения распределения растворенных веществ между двумя жидкостями. Затем воронку закрепили в штативе для разделения фаз.

По достижении равновесия очищенный аминовый раствор находился в верхнем слое, а насыщенный примесями полифениловый эфир — в нижнем. Каждый слой сливали в отдельные пробирки.

Исследование пенообразующих свойств исходных и подвергшихся экстракции аминовых растворов проводили в стеклянном термостатируемом аппарате (барботере). Испытуемый раствор 8 мл заливали в пенную колонку на фильтр Шота и продували через него воздух. Включали секундомер в момент появления первых пузырьков воздуха над фильтром.

По истечении 3 минут замеряли высоту образующейся пены в колонне с помощью измерительной шкалы. Прекращали подачу воздуха, включали секундомер и замеряли стабильность пены (время разрушения пены) до появления зеркала раствора. Операции повторяли еще 2 раза, каждый раз дожидаясь полного опадания пены.

За результат измерения принимали среднее арифметическое трех полученных значений. Результаты исследования приведены в таблице 1.

Из таблицы видно, что оптимальными параметрами экстракционной очистки аминового раствора являются объемное соотношение полифенилового эфира к аминовому раствору в диапазоне от 1:50 до 1:300, время контакта не более 3 минут и температура в интервале от 50 до 70°С.

В следующей серии опытов было исследовано влияние объемного соотношения полифенилового раствора к метилэтилкетону на эффективность выведения пенообразующих веществ в зависимости от температуры, времени контакта.

Результаты испытаний приведены в таблице 2.

Как видно из таблицы, оптимальными условиями для наиболее полного извлечения пенообразующих веществ являются объемное соотношение полифенилового эфира к метилэтилкетону, равное 1:1-3, температура 50-70°С и время контактирования 1-2 минуты.

Таким образом, использование заявляемого изобретения позволит поддерживать допустимый уровень содержания пенообразующих веществ в циркулирующем аминовом растворе путем изменения соотношения объема экстрагента к объему очищаемого раствора и/или увеличения доли циркулирующего аминового раствора, подаваемого на экстракционную очистку.

Таблица 1
№ опыта Испытываемый раствор Температура экстракции, °С Пенные характеристики раствора
Высота пены, мм Стабильность пены, с
1 Исходный аминовый раствор 50 62,5 115
2 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:50 50 49,5 25
3 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:150 50 50,5 30
4 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:300 50 57,6 30
5 Исходный аминовый раствор 70 62,5 115
6 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:50 70 43,5 4,1
7 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:150 70 44,0 4,6
8 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:300 70 46,0 5,1
9 Исходный аминовый раствор 90 62,5 115
10 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:50 90 85,0 7,0
11 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:150 90 92,5 9,2
12 Полифениловый эфир — аминовый раствор берут в объемном отношении 1:300 90 100 9,5
Таблица 2
Температура, °С Время контакта, мин Время оседания примесей, сек
Полифениловый эфир — метилэтилектон берут в объемном отношении
1:3 1:2 1:1
25 1 60 70 75
2 60 70 75
50 1 20 26 32
2 20 26 32
70 1 10 17 19
2 10 17 19

Способ очистки аминового раствора процесса очистки газов от сероводорода и углекислого газа путем экстракции из него полифениловым эфиром пенообразующих веществ, отличающийся тем, что экстракцию ведут при объемном соотношении «полифениловый эфир — аминовый раствор», равном 1:50-300, отработанный полифениловый эфир подвергают регенерации путем его смешивания с метилэтилкетоном в объемном соотношении, соответственно равном 1:1-3, с последующим выделением пенообразующих веществ в осадок, после чего смесь полифенилового эфира с метилэтилкетоном разделяют в отпарной колонне для повторного использования в процессе очистки.

Ссылка на основную публикацию
Adblock
detector