Солнечная энергия как альтернативный источник энергии: виды гелиосистем

Пост опубликован: 28 апреля, 2017

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия как альтернативный источник энергии: виды гелиосистем

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Солнечная энергия как альтернативный источник энергии: виды гелиосистем

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

  • Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.
  • Солнечная энергия как альтернативный источник энергии: виды гелиосистем
  • Путем применения термоэлектрических генераторов.
  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

Солнечная энергия как альтернативный источник энергии: виды гелиосистем

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.Солнечная энергия как альтернативный источник энергии: виды гелиосистем
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:Солнечная энергия как альтернативный источник энергии: виды гелиосистем

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают вСолнечная энергия как альтернативный источник энергии: виды гелиосистем

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанцииСолнечная энергия как альтернативный источник энергии: виды гелиосистем

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Солнечная энергия как альтернативный источник энергии: виды гелиосистем

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного домаСолнечная энергия как альтернативный источник энергии: виды гелиосистем

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Солнечная энергия как альтернативный источник энергии: виды гелиосистем

В последнее десятилетие солнечная энергия как альтернативный источник энергии используется все чаще для отопления и обеспечения зданий горячей водой. Основная причина – стремление заменить традиционное топливо доступными, экологически чистыми и восполняемыми энергоресурсами.

Читайте также:  Антисептик для дерева своими руками: состав и рецепты приготовления пропитки

Преобразование солнечной энергии в тепловую происходит в гелиосистемах – конструкция и принцип действия модуля определяет специфику его применения. В этом материале мы рассмотрим разновидности солнечных коллекторов и принципы их функционирования, а также расскажем о популярных моделях солнечных модулей.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока. Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2021 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Гелиосистемы: особенности конструкции и эксплуатации

Многообразие гелиосистем можно классифицировать по таким параметрам: метод использования солнечной радиации, способ циркуляции теплоносителя, количество контуров и сезонность эксплуатации.

Активный и пассивный комплекс

В любой солнечной системе преобразования энергии предусмотрен гелиоприемник. Исходя из способа использования полученного тепла различают два типа гелиокомплексов: пассивные и активные.

Первая разновидность – система солнечного отопления, где теплопоглощающим элементом солнечного излучения выступают конструктивные элементы здания. В качестве гелиоприемной поверхности выступают кровля, стена-коллектор или окна.

Схема низкотемпературной пассивной гелиосистемы со стеной-коллектором: 1 – лучи солнца, 2 – полупрозрачный экран, 3 – воздушный барьер, 4 – разогретый воздух, 5- отработанные воздушные потоки, 6 – тепловое излучение от стены, 7 – теплопоглощающая поверхность стены-коллектора, 8 – декоративные жалюзи

В европейских странах пассивные технологии используются при возведении энергосберегающих зданий. Гелиоприемные поверхности декорируют под фальшь-окна. За стеклянным покрытием размещается кирпичная зачерненная стена со светопроемами.

  • В качестве теплоаккумуляторов выступают элементы сооружения – стены и перекрытия, изолированные полистиролом извне.
  • Активные системы подразумевают использование самостоятельных устройств, не относящихся к сооружению.
  • В эту категорию относятся выше рассмотренные комплексы с трубчатыми, плоскими коллекторами – гелиотермические установки, как правило, размещаются на крыше здания

Термосифонные и циркуляционные системы

Гелиотермическое оборудование с естественным движением теплоносителя по контуру коллектор-аккумулятор-коллектор осуществляется за счет конвекции – теплая жидкость с малой плотностью поднимается вверх, охлажденная – стекает вниз.

В термосифонных системах накопительный бак размещается выше коллектора, обеспечивая самопроизвольную циркуляцию теплоносителя.

Схема работы свойственна одноконтурным сезонным системам. Термосифонный комплекс не рекомендуется использовать для коллекторов, площадью более 12 кв.м

Безнапорная гелиосистема имеет широкий перечень недостатков:

  • в облачные дни производительность комплекса падает – для движения теплоносителя требуется большая разница температур;
  • тепловые потери, обусловленные медленным передвижением жидкости;
  • риск перегрева бака ввиду неуправляемости нагревательного процесса;
  • нестабильность работы коллектора;
  • сложность размещения бака-аккумулятора – при монтаже на крыше возрастают теплопотери, ускоряются коррозийные процессы, появляется риск замерзания патрубков.

Плюсы «гравитационной» системы: простота конструкции и ценовая доступность.

https://www.youtube.com/watch?v=ZfAHn1khda0

Капитальные затраты на обустройство циркуляционной (принудительной) гелиосистемы значительно выше установки безнапорного комплекса. В контур «врезается» насос, обеспечивающий движения теплоносителя. Работа насосной станции управляется контролером.

  1. Дополнительная тепловая мощность, вырабатываемая в принудительном комплексе, превышает мощность, потребляемую насосным оборудованием. Эффективность системы возрастет на треть
  2. Такой способ циркуляции задействован в круглогодичных двухконтурных гелиотермических установках.
  3. Плюсы полнофункционального комплекса:
  • неограниченный выбор месторасположения аккумулирующего бака;
  • работоспособность вне сезона;
  • выбор оптимального режима нагрева;
  • безопасность – блокировка работы при перегреве.

Недостаток системы – зависимость от электроэнергии.

Техническое решение схем: одно – и двухконтурные

В одноконтурных установках циркулирует жидкость, которая впоследствии подается к водозаборным точкам. В зимний период воду с системы надо сливать, чтоб предупредить замерзание и растрескивание труб.

Особенности одноконтурных гелиотермических комплексов:

  • рекомендована «заправка» системы очищенной нежесткой водой – оседание солей на стенках труб приводит к засорению каналов и поломке коллектора;
  • коррозия из-за избытка воздуха в воде;
  • ограниченный срок службы – в пределах четырех-пяти лет;
  • высокий КПД летом.
  • В двухконтурных гелиокомплексах циркулирует специальный теплоноситель (незамерзающая жидкость с противовспенивающими и антикоррозийными добавками), отдающий тепло воде через теплообменник.
  • Схемы устройства одноконтурной (1) и двухконтурной (2) гелиосистемы. Второй вариант отличается повышенной надежностью, возможностью работы зимой и длительностью эксплуатации (20-50 лет)
  • Нюансы эксплуатации двухконтурного модуля: незначительное снижение КПД (на 3-5% меньше чем в одноконтурной системе), необходимость полной замены теплоносителя каждые 7 лет.

Виды альтернативного электричества

Всегда перед потребителем стоит выбор, основанный на вопросе, что лучше? И в этом плане подразумевается, во-первых, затраты на приобретение нового вида источника электричества, во-вторых, как долго этот прибор будет работать. То есть, будет ли это выгодно, окупится ли вся затея, а если окупится, то через какой промежуток времени? Скажем так, экономию денежных средств еще никто не отменял.

Как видите, вопросов и проблем и здесь хватает, потому что электричество своими руками – дело не только серьезное, но и достаточно затратное.

Электрогенератор

Начнем именно с этой установки, как с самой простой. Простота ее заключается в том, что вам необходимо приобрести электрогенератор, установить его в надежном закрытом помещении, которое будет соответствовать правилам пожарной безопасности.

Далее, проводите подключение электрической сети частного дома к нему, заливаете жидкое топливо (бензин или солярку) и включаете. После чего в вашем доме появляется электричество, которое зависит лишь от наличия топлива в баке генератора.

Если продумать автоматическую систему подачи топлива, то вы получаете маленькую тепловую электростанцию, которая от вас будет требовать минимального присутствия.

Бензиновый генератор

К тому же электрогенераторы – это надежные и удобные установки, которые работают практически вечно, если правильно их эксплуатировать. Но тут есть один момент. В настоящее время на рынке присутствует два вида генераторов:

Какой лучше? Скажем так, если вам требуется альтернативный источник энергии, который будет эксплуатироваться постоянно, тогда выбирайте дизельный. Если для временного использования, тогда бензиновый.

И это еще не все. Дизельный электрогенератор имеет большие габаритные размеры, по сравнению с бензиновым, он сильно шумит при работе и выделяет огромное количество дыма и выхлопных газов.

Плюс ко всему он дороже.

Тепловые насосы

Следующий вариант из категории «альтернативные виды энергии» – энергия из недр земли. Для частного дома – это идеальный вариант. Он простой, эффективный и экономичный. Для этого на участке около дома бурится скважина (чем глубже, тем лучше), куда устанавливается тепловой насос.

Подземные воды имеют всегда положительную температуру. При охлаждении насосом этой воды, выделяется энергия, которую и приходиться использовать.

Но у некоторых может возникнуть вопрос, как же работает насос, ведь для него также необходима электрическая энергия? Все правильно, но данная установки имеет определенное соотношение потребленной энергии и выделенной, которая находится вот в такой зависимости – 1:6. Так что эффективность налицо.

Применение энергии солнца

Подключение солнечной батареи к домашней электросети

Альтернативное электричество на основе электромагнитного солнечного излучения оправдано для людей, у которых есть дача за городом. Причина – показатель суммарной мощности в хорошую погоду не более 5-7 кВт за час. На сегодняшний день популярны несколько солнечных установок.

Солнечные батареи

Сборка устройств производится из фотоэлектрических преобразователей. Промышленные элементы конструируются из минеров, вырабатывающих ток при воздействии прямого света. В частном секторе популярны кремниевые преобразователи поли- и монокристаллического типа. Последние отличаются КПД 13-25 %, но поликристаллические дешевле. Температурный диапазон пластин – от -40 до +50 градусов.

Солнечные коллекторы

Вакуумные солнечные коллекторы

Используются для нагрева воздуха или воды. Пользователь может задать направление нагретых потоков, организовать резерв на случай плохой погоды. Производители выпускают три модификации коллекторов – воздушные, плоские и трубчатые.

  • Плоские пластиковые. Представляют собой черную и прозрачную панель в одном корпусе с центральным змеевиком из меди. При воздействии солнечных лучей нагревается нижний темный элемент. Он передает тепло медному змеевику, который греет воду. Плоский коллектор подходит для подогрева воды в бассейне или летнем душе. Минус технологии – для нагрева больших объемов требуется много элементов.
  • Трубчатые. Имеют вид вакуумных или коаксиальных трубочек из стекла. По ним стекает вода, нагретая солнцем. Тепло, сосредоточенное внутри специальной системой, нагревает воду в накопительном резервуаре. Для циркуляции водных потоков применяется нанос. Трубчатый коллектор – неплохое решение для подогрева воды в ГВС и отопления.
  • Воздушные солнечные коллекторы. Устройства напоминают плоские пластиковые модели за счет черной нижней и прозрачной верхней панели. Габаритные установки находятся на восточной или юго-восточной стене. В них за счет солнечного тепла нагревает воздух, подаваемый в дом и хозяйственные помещения специальными вентиляторами.
Читайте также:  Композитный газовый баллон: преимущества использования евробаллонов

Солнечная энергия лучше всего подходит для теплых полов.

Ветрогенераторы

В тех регионах, где ветер всегда в наличии (приморские районы, горные, степные), оптимальный вариант альтернативного источника электрического тока – ветровой генератор. В Америки эти установки применяются почти везде. Стоят, правда, они недешево, то именно с их помощью можно решать проблемы отсутствия электроэнергии.

Принцип получения тока здесь достаточно простой. Ветер давит на лопасти, которые приводя во вращение ротор электрического генератора. Последний выдает электрический ток.

То есть, в установке используется принцип преобразования механической энергии в электрическую. Самое главное, что ветрогенераторы работают при минимальных порывах ветра, свыше 2 м/с.

Если скорость не будет ниже 8 м/с, то генератор можно подключать к дому напрямую.

Принцип работы альтернативных источников энергии

Самая уязвимая часть оборудования – это аккумулятор, в котором скапливается электроэнергия. Он быстро выходит из строя, а стоит 25% от цены всей установки.

Поэтому этот вариант получения альтернативной энергии лучше всего использовать не на накопление, а на потребление.

Поэтому чаще всего ветровые генераторы подключаются к системам отопления и горячего водоснабжения напрямую. Кстати, оправданный и превосходный выход из положения.

Котлы на биотопливе – альтернативный источник отопления частного дома и квартиры

Котлы на биотопливе – распространенные альтернативные источники энергии для частного дома, которые отличает высокое качество исполнения.

Биотопливо в виде брикетов и пеллет из сырья растительного происхождения (опилки, стружка, отходы пиломатериалов, лузга подсолнечника) – альтернативное отопление, которое может служить идеальной заменой газовому отоплению в частном доме благодаря высокой теплоотдаче, которая может достигать 6-8 тыс. кКал/кг.

Котел для биотоплива – универсальное отопительное устройство с высоким КПД, оснащенное автоматической системой управления, и может с успехом применяться и для отопления другими видами твердого топлива, в том числе углем, дровами, угольными брикетами.

https://www.youtube.com/watch?v=GSEwRbelHeM

Котлы на биотопливе, как альтернативные источники отопления частного дома, могут использоваться не только для отопления (одноконтурные котлы), но и обеспечивать горячее водоснабжение помещений – для этого можно приобрести двухконтурный котел или добавить к существующему устройству второй контур с бойлером соответствующего типа (проточный или накопительный). Несложное устройство котлов для биотоплива дает возможность обустроить альтернативное отопление дома своими руками, сэкономив, таким образом, часть средств семейного бюджета.

Как сэкономить на внедрении “зеленой энергетики”?

  1. Проанализировав финансовую составляющую альтернативных видов отопления, можно прийти к неутешительному выводу – потребуются значительные средства на первоначальном этапе.
  2. Вот спустя 3-7 лет, в зависимости от выбранного способа отопления, станет заметна существенная экономия благодаря энергонезависимой системе.

  3. Выгодно и удобно использовать комбинированные источник альтернативного отопления. Для этого можно подобрать наиболее оптимальную комбинацию для своего дома

Сэкономить на использовании и установке альтернативных установок для выработки тепла можно.

Многие домашние мастера с большим энтузиазмом подходят к созданию своими руками аналогов фабричным приборам преобразования альтернативной энергии.

Так, достаточно просто и недорого можно собрать гелиоустановку из шланга, которая послужит дополнительным источником нагрева воды.

Успешно собираются в домашних условиях небольшие ветряки из подручных средств. Также начитанные фермеры, проживающие в сельской местности, сооружают установки по преобразованию биологических отходов растительного и животного происхождения в биогаз.

Самодельные ветрогенераторы вполне работоспособны. Но для их сборки потребуется произвести предварительные расчеты, приобрести расходные материалы, потратить свое время

В дальнейшем он используется для потребностей хозяйства. В зависимости от размера резервуара для сбраживания отходов и площади частного дома, возможно полностью обеспечить хозяйство биогазом для удовлетворения всех нужд.

Популярные модели «солнечных» модулей

Спросом пользуются гелиосистемы отечественных и зарубежных компаний. Хорошую репутацию завоевали изделия производителей: НПО Машиностроения (Россия), Гелион (Россия), Ariston (Италия), Альтен (Украина), Viessman (Германия), Amcor (Израиль) и др.

Гелиосистема «Сокол». Плоский гелиоколлектор, оснащенный многослойным оптическим покрытием с магнитронным напылением. Минимальная способность излучения и высокий уровень поглощения обеспечивают КПД до 80%.

Эксплуатационные характеристики:

  • рабочая температура – до -21 °С;
  • обратное излучение тепла – 3-5%;
  • верхний слой – закаленное стекло (4 мм).

Коллектор СВК-А (Альтен). Вакуумная гелиоустановка с площадью абсорбции 0,8-2,41 кв.м (зависимо от модели). Теплоноситель – пропиленгликоль, теплоизоляция медного теплообменника в 75 мм минимизирует теплопотери.

Дополнительные параметры:

  • корпус – анодированный алюминий;
  • диаметр теплообменника – 38 мм;
  • изоляция – минвата с антигигроскопичной обработкой;
  • покрытие – боросиликатное стекло 3,3 мм;
  • КПД – 98%.

Vitosol 100-F – плоский гелиоколлектор горизонтального или вертикального монтажа. Медный абсорбер с арфообразным трубчатым змеевиком и гелиотитановым покрытием. Пропускание света – 81%.

Ориентировочный порядок цен на гелиосистемы: плоские гелиоколлекторы – от 400 у.е./кв.м, трубчатые солнечные коллекторы – 350 у.е./10 вакуумных колб. Полный комплект циркуляционной системы – от 2500 у.е.

Исследовательский проект «Энергия Солнца как альтернативный источник тепловой и электрической энергии»

В последнее десятилетие солнечная энергия как альтернативный источник энергии используется все чаще для отопления и обеспечения зданий горячей водой. Основная причина – стремление заменить традиционное топливо доступными, экологически чистыми и восполняемыми энергоресурсами.

Преобразование солнечной энергии в тепловую происходит в гелиосистемах – конструкция и принцип действия модуля определяет специфику его применения. В этом материале мы рассмотрим разновидности солнечных коллекторов и принципы их функционирования, а также расскажем о популярных моделях солнечных модулей.

Общее устройство и принцип действия

Рассмотрим вариант гелиосистемы с коллектором в качестве основного рабочего элемента системы. Внешний вид агрегата напоминает металлический ящик, лицевая сторона которого изготовлена из закаленного стекла. Внутри короба размещен рабочий орган – змеевик с абсорбером.

Теплопоглощающий блок обеспечивает нагрев теплоносителя – циркулирующая жидкость, передает сгенерированное тепло в контур водоснабжения.

Основные узлы гелиосистемы: 1 – коллекторное поле, 2 – воздухоотводчик, 3 – распределительная станция, 4 – резервуар сброса избыточного давления, 5 – контролер, 6 – бак-водонагреватель, 7,8 – тэн и теплообменник, 9 – клапан термосмесительный, 10 – расход горячей воды, 11 – поступление холодной воды, 12 – слив, Т1/Т2 – температурные датчики

Гелиоколлектор обязательно работает в тандеме с аккумулирующим баком. Поскольку теплоноситель нагревается до температуры 90-130°С, его нельзя подавать непосредственно в краны горячего водоснабжения или отопительные радиаторы. Теплоноситель поступает в теплообменник бойлера. Накопительный бак часто дополняется электрическим нагревателем.

Схема работы:

  1. Солнце нагревает поверхность коллектора.
  2. Тепловое излучение передается поглощающему элементу (абсорберу), в котором содержится рабочая жидкость.
  3. Циркулирующий по трубкам змеевика теплоноситель разогревается.
  4. Насосное оборудование, блок управления и контроля обеспечивают отвод теплоносителя по трубопроводу к змеевику накопительного бака.
  5. Осуществляется передача тепла воде в бойлере.
  6. Охлажденный теплоноситель поступает обратно в коллектор и цикл повторяется.
  • Нагретая вода от водонагревателя подается в контур отопления или к водозаборным точкам.
  • При обустройстве отопительной системы или круглогодичного горячего водоснабжения, система комплектуется источником дополнительного подогрева (котел, электрический ТЭН). Это необходимое условие для поддержания заданной температуры
  • Солнечные батареи в обустройстве частных домов чаще всего используют в качестве резервного источника электроэнергии:
  • Галерея изображений
  • Фото из
  • Гелиосистема для генерации электроэнергии
  • Зависимость мощности от использованной площади
  • Аппаратура для управления гелиостанцией
  • Автоматизация использования солнечной энергии

Необходимость использования новых источников энергии

Развитие энергетики и технологический прогресс привели к постоянному росту спроса на энергоресурсы. До 60-х годов прошлого века основным источником энергетики являлась нефть.

Кризис 1973 года показал, что ориентация на один вид ресурса может повлечь за собой непредвиденные ситуации.

Многие экономически развитые страны разработали новую энергетическую стратегию, которая основывается на диверсификации энергетических источников.

Читайте также:  Расшифровка единиц мощности: разница между киловаттом и киловольтом

С этого времени ученые уделяют большое внимание проблемам всемирного энергосбережения и изучению возможностей применения нетрадиционных альтернативных источников энергии.

Гелиосистемы: особенности конструкции и эксплуатации

Многообразие гелиосистем можно классифицировать по таким параметрам: метод использования солнечной радиации, способ циркуляции теплоносителя, количество контуров и сезонность эксплуатации.

Активный и пассивный комплекс

В любой солнечной системе преобразования энергии предусмотрен гелиоприемник. Исходя из способа использования полученного тепла различают два типа гелиокомплексов: пассивные и активные.

Первая разновидность – система солнечного отопления, где теплопоглощающим элементом солнечного излучения выступают конструктивные элементы здания. В качестве гелиоприемной поверхности выступают кровля, стена-коллектор или окна.

Схема низкотемпературной пассивной гелиосистемы со стеной-коллектором: 1 – лучи солнца, 2 – полупрозрачный экран, 3 – воздушный барьер, 4 – разогретый воздух, 5- отработанные воздушные потоки, 6 – тепловое излучение от стены, 7 – теплопоглощающая поверхность стены-коллектора, 8 – декоративные жалюзи

В европейских странах пассивные технологии используются при возведении энергосберегающих зданий. Гелиоприемные поверхности декорируют под фальшь-окна. За стеклянным покрытием размещается кирпичная зачерненная стена со светопроемами.

  1. В качестве теплоаккумуляторов выступают элементы сооружения – стены и перекрытия, изолированные полистиролом извне.
  2. Активные системы подразумевают использование самостоятельных устройств, не относящихся к сооружению.
  3. В эту категорию относятся выше рассмотренные комплексы с трубчатыми, плоскими коллекторами – гелиотермические установки, как правило, размещаются на крыше здания

Термосифонные и циркуляционные системы

Гелиотермическое оборудование с естественным движением теплоносителя по контуру коллектор-аккумулятор-коллектор осуществляется за счет конвекции – теплая жидкость с малой плотностью поднимается вверх, охлажденная – стекает вниз.

В термосифонных системах накопительный бак размещается выше коллектора, обеспечивая самопроизвольную циркуляцию теплоносителя.

Схема работы свойственна одноконтурным сезонным системам. Термосифонный комплекс не рекомендуется использовать для коллекторов, площадью более 12 кв.м

Безнапорная гелиосистема имеет широкий перечень недостатков:

  • в облачные дни производительность комплекса падает – для движения теплоносителя требуется большая разница температур;
  • тепловые потери, обусловленные медленным передвижением жидкости;
  • риск перегрева бака ввиду неуправляемости нагревательного процесса;
  • нестабильность работы коллектора;
  • сложность размещения бака-аккумулятора – при монтаже на крыше возрастают теплопотери, ускоряются коррозийные процессы, появляется риск замерзания патрубков.

Плюсы «гравитационной» системы: простота конструкции и ценовая доступность.

https://www.youtube.com/watch?v=ZfAHn1khda0

Капитальные затраты на обустройство циркуляционной (принудительной) гелиосистемы значительно выше установки безнапорного комплекса. В контур «врезается» насос, обеспечивающий движения теплоносителя. Работа насосной станции управляется контролером.

Дополнительная тепловая мощность, вырабатываемая в принудительном комплексе, превышает мощность, потребляемую насосным оборудованием. Эффективность системы возрастет на треть

Такой способ циркуляции задействован в круглогодичных двухконтурных гелиотермических установках.

  Детская комната для троих детей — идеи обустройства

Плюсы полнофункционального комплекса:

  • неограниченный выбор месторасположения аккумулирующего бака;
  • работоспособность вне сезона;
  • выбор оптимального режима нагрева;
  • безопасность – блокировка работы при перегреве.

Недостаток системы – зависимость от электроэнергии.

Техническое решение схем: одно – и двухконтурные

В одноконтурных установках циркулирует жидкость, которая впоследствии подается к водозаборным точкам. В зимний период воду с системы надо сливать, чтоб предупредить замерзание и растрескивание труб.

Особенности одноконтурных гелиотермических комплексов:

  • рекомендована «заправка» системы очищенной нежесткой водой – оседание солей на стенках труб приводит к засорению каналов и поломке коллектора;
  • коррозия из-за избытка воздуха в воде;
  • ограниченный срок службы – в пределах четырех-пяти лет;
  • высокий КПД летом.
  • В двухконтурных гелиокомплексах циркулирует специальный теплоноситель (незамерзающая жидкость с противовспенивающими и антикоррозийными добавками), отдающий тепло воде через теплообменник.
  • Схемы устройства одноконтурной (1) и двухконтурной (2) гелиосистемы. Второй вариант отличается повышенной надежностью, возможностью работы зимой и длительностью эксплуатации (20-50 лет)
  • Нюансы эксплуатации двухконтурного модуля: незначительное снижение КПД (на 3-5% меньше чем в одноконтурной системе), необходимость полной замены теплоносителя каждые 7 лет.

Освоение нетрадиционных источников

К нетрадиционным источникам энергии относятся:

  • энергия солнца;
  • энергия ветра;
  • геотермальная;
  • энергия морских приливов и волн;
  • биомассы;
  • низкопотенциальная энергия окружающей среды.

Их освоение представляется возможным благодаря повсеместной распространенности большинства видов, можно отметить также их экологическую чистоту и отсутствие эксплуатационных затрат на топливную составляющую.

Однако существуют и некоторые отрицательные качества, которые препятствуют применению их в производственных масштабах. Это – небольшая плотность потока, которая заставляет применять «перехватывающие» установки большой площади, также изменчивость во времени.

Все это приводит к тому, что подобные устройства обладают большой материалоемкостью, а значит, увеличиваются и капиталовложения. Ну, а процесс получения энергии из-за некоторого элемента случайности, связанного с погодными условиями, доставляет немало неприятностей.

Другой наиважнейшей проблемой остается «сохранение» этого энергетического сырья, так как существующие технологии аккумулирования электроэнергии не позволяют сделать это в больших количествах.

Тем не менее, в бытовых условиях альтернативные источники энергии для дома пользуются все большей популярностью, поэтому ознакомимся с основными энергоустановками, которые можно установить в частном владении.

Условия для работы и повышения эффективности

Расчет и монтаж гелиосистемы лучше доверить профессионалам. Соблюдение техники установки обеспечит работоспособность и получение заявленной производительности. Для улучшения эффективности и периода службы надо учесть некоторые нюансы.

Термостатический клапан. В традиционных системах теплоснабжения термостатический элемент редко устанавливается, так как за регулировку температуры отвечает теплогенератор. Однако при обустройстве гелиосистемы о защитном клапане забывать нельзя.

Нагрев бака до максимальной допустимой температуры повышает производительность коллектора и позволяет задействовать солнечное тепло даже при пасмурной погоде

Оптимальное размещение клапана – 60 см от нагревателя. При близком расположении «термостат» нагревается и блокирует подачу горячей воды.

Размещение бака-аккумулятора. Буферная емкость ГВС должна устанавливаться в доступном месте. При размещении в компактном помещении особое внимание уделяется высоте потолков.

Минимальное свободное пространство над баком – 60 см. Этот зазор необходим для обслуживания аккумулятора и замены магниевого анода

Установка расширительного бака. Элемент компенсирует температурное расширение в период стагнации. Установка бака выше насосного оборудования спровоцирует перегрев мембраны и ее преждевременный износ.

Оптимальное место для расширительного бачка – под насосной группой. Температурное воздействие при таком монтаже значительно сокращается, и мембрана дольше сохраняет эластичность

Подсоединение гелиоконтура. При подключении труб рекомендуется организовать петлю. «Термопетля» сокращает теплопотери, препятствуя выходу разогретой жидкости.

Технически правильный вариант реализации «петли» гелиоконтура. Пренебрежение требованием становится причиной понижения температуры в баке-аккумуляторе на 1-2°С за ночь

Обратный клапан. Предупреждает «опрокидывание» циркуляции теплоносителя. При недостатке солнечной активности обратный клапан не дает рассеиваться теплу, накопленному днем.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы.

Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль.

Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой.

Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца.

И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».

Инсолятор О. Мушо Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы.

Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей.

Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Ссылка на основную публикацию
Adblock
detector