Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Всем читателям ПРИВЕТ! В одной из своих записей я рассказал, что поставил на автомобиль ДХО. Однако, не успел поставить стабилизатор напряжения. Для чего нужен он, да все просто.

Итак, в бортовой сети автомобиля рабочее питание составляет от 12,8 до 14,7 Вольт (на разных машинах по своему), а вот светодиоды рассчитаны на 12 вольт. Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля.

Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля. Физику светодиодов можно почитать в интернете, информации полно!

Можно было заказать с АлиЭкспресс, но я решил делать сам. Опыт был уже.Для изготовления стабилизатора мною были приобретены следующие компоненты:1. Стабилизатор 2шт.2. Конденсатор 100 мкФ 16V 2 шт.3. Конденсатор 330 мкФ 16V 2 шт.Итог: 70₽

Провода: взял от компьютера, так как они на концах уже изолированы и идеально подходят для купленных стабилизаторов.

Выбрал схему подключения (рисунок 1). Однако, в выбранной схеме исключил диод, так как он нужен грубо говоря, когда на выходе стабилизатора напряжение будет больше, чем на входе! Но такое бывает очень редко, можно сказать никогда!

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Рисунок 1 — схема стабилизатора

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Полный размер

Провода-доноры

Далее пошёл процесс пайки. Оговорюсь сразу, что я не профессионал в этом деле, а любитель. Поэтому многие могут сказать, что неаккуратно сделал. Уж извиняйте))) после того, как все спаял решил засунуть в какой-нибудь корпус.

И тут меня осенило, что корпус для стабилизаторов можно сделать из киндер сюрприза, благо у сына этого добра хватает))) Сделал отверстия с каждой стороны пластикового яйца и просунул провода.

Выглядит все это довольно приемлемо!Утром на стоянке проверил мультиметром входное и выходное напряжение! Все ОК.

P.S. Уважаемые читатели, не судите строго за дизайн корпуса и пайку. Главное, чтобы ВЫ поняли, для того, чтобы светодиоды на ваших машинах работали долго, надо ставить стабилизаторы. Сделать их не сложно и недолго, цена — копейки!В будущем хочу сделать стабилизатор в виде микросхемы!

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Полный размер

Думаю, вы поймёте, почему выбрал провода от компьютера

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Заизолировал контакты

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Сделал общий минус

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Итог пайки

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Итог пайки — 2

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Стабилизатор в корпусе

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Полный размер

Готовые стабилизаторы

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Проверка — входное напряжение на стабилизатор

Полный размер

Проверил работоспособность стабилизатора на старой светодиодной ленте — ОК

Цена вопроса: 70 ₽ Пробег: 69 000 км

Источник: https://drive2.ru/l/476670177551843723/

Стабилизатор напряжения на 12 вольт: схема и разновидности, выбор для светодиодов

В электрической цепи автомобиля часто применяют стабилизатор напряжения 12 вольт. Необходимость установки его объясняется тем, что автомобильные источники питания (аккумуляторная батарея и генератор) различных 12-ти вольтовых электроприборов выдают постоянный ток с напряжением от 12,5 до 14 В.

Такие большие колебания способны привести к повреждению и выходу из строя чувствительных и дорогостоящих светодиодных лент, противотуманных фар, магнитол.

 Также помимо электрических систем автомобилей подобные устройства применяются в 12-ти вольтных блоках питания, способных понижать и преобразовывать переменный ток электрической бытовой сети в более подходящий для ряда приборов постоянный.

Выбор устройства

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиСтабилизатор напряжения 12 вольт

При выборе стабилизатора учитывают следующие характеристики:

  • Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
  • Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
  • Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
  • Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
  • Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.

Также при выборе стабилизатора необходимо учитывать отзывы их покупателей, которые можно найти на специализированных форумах и сайтах.

Разновидности 12В стабилизаторов

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:

  • Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
  • Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.

Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.

Классическая модель

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиЛинейный стабилизатор с транзистором

Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:

  • При напряжении подключенного к стабилитрону источника питания меньше 12 В он находится в закрытом положении и не участвует в регулировке данной характеристики электрического тока.
  • При превышении порога в 12 Вольт стабилитрон «открывается» и поддерживает данное значение в заданном его характеристиками диапазоне.

В случае превышения напряжения, подаваемого на стабилитрон, относительно заявленного как максимальное производителем прибор очень быстро выходит из строя из-за эффекта теплового пробоя.

Чтобы любая модель стабилитрона служила максимально долго, рекомендуется по его спецификации уточнить тот диапазон напряжений, силы тока, в котором его следует эксплуатировать.

В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.

Интегральный стабилизатор

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиУстройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.

Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.

Как сделать 12В стабилизатор

Простые, но при этом достаточно эффективные, надежные и долговечные стабилизирующие устройства можно сделать самостоятельно, используя при этом простые стабилитроны и специальные небольшие микросхемы типа LM317, LD1084, L7812, КРЕН (КР142ЕН8Б).

Стабилизатор на LM317

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиПроцесс сборки такого стабилизирующего напряжение устройства состоит из следующих этапов:

  1. К среднему выходному контакту микросхемы припаивается 130-ти омное сопротивление.
  2. К входному правому контакту припаивается проводник, подающий нестабилизированное напряжение от источника питания.
  3. Левый регулировочный контакт припаивается ко второй ножке резистора, установленного на выходе микросхемы.

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиПроцесс пайки такого стабилизатора занимает не более 10 минут и с учетом недорогой микросхемы не требует больших капиталовложений. При помощи подобного устройства запитывают светодиодные фонари, ленты.

Микросхема LD1084

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Сборка устройства для стабилизации напряжения автомобильной бортовой сети с использованием микросхемы LD1084 производится следующим образом:

  1. К входному контакту микросхемы припаивается проводник с плюсовым напряжением от диодного моста.
  2. К регулировочному контакту припаивается эмиттер биполярного транзистора, базу которого через два резистора номиналом 1 кОм питает ток ближнего и дальнего света фар.
  3. К контакту выхода припаивается два резистора (один – обычный на 120 Ом, а второй – подстроечный, на 4,7кОм) и электролитический конденсатор на 10 мкФ

Для сглаживания пульсации тока после диодного моста устанавливается еще один электролитический конденсатор емкостью 10 мкф.

Стабилизатор на диодах и плате L7812

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиСхема стабилизатора 12 В для светодиодов на плате L7812

Простой интегральный выравниватель на диоде Шоттки и двух конденсаторах собирают следующим образом:

  1. К входному контакту микросхемы припаивается: диод типа 1N4007, анод которого при помощи провода соединяется с плюсом источника питания, плюсовая обкладка мощного 16-ти вольтного электролитического конденсатора емкостью 330 мкФ.
  2. К правому выходному контакту припаивается нагрузка и ножка плюсовой обкладки 16-ти вольтного электролитического конденсатора на 100 мкФ.
  3. К среднему регулировочному контакту припаивается минус, идущий от батареи, и провод от минусовых обкладок конденсаторов.

От такого простого устройства можно запитывать мощные ленты из светодиодов и магнитолу.

Самый простой стабилизатор — плата КРЕН

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими рукамиСтабилизатор на микросхеме КРЕН

Схема стабилизатор напряжения на 12 вольт на основе платы крен (КР142ЕН8Б) включает в себя следующие компоненты:

  • Припаянный к входному контакту выпрямляющий диод типа 1N4007.
  • Микросхему КР142ЕН8Б либо KIA7812A.
  • Два провода, припаянные к выходному и регулировочному контакту микросхемы и соединенные с нагрузкой и минусом источника питания.

Конструкция на плате КРЕН является самой простой и быстрой в сборке. При этом эффективность и область применения у нее такая же, как и у других самодельных аналогов.

Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-sdelat-stabilizator-napryazheniya-na-12-volt-svoimi-rukami/

Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Светодиодная подсветка все глубже внедряется в нашу жизнь. Капризные лампочки выходят из строя и красота сразу меркнет.  И все потому, что светодиоды не могут работать просто от включения в электросеть.

Они обязательно подключаются через стабилизаторы (драйверы). Последние препятствуют перепадам напряжения, выходу из строя компонентов, перегреву и т. п.

Об этом и о том, как собрать простую схему своими руками, и пойдёт речь в статье.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками.

Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения.

Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Читайте также:  Роботы пылесосы iclebo: функции и технические возможности моделей Айклебо

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема подключения на базе LM2940CT-12.0

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Заключение

Идеальный вариант подключения светодиодов – через стабилизатор тока. Устройство уравновешивает колебания сети, с его использованием уже не будут страшны броски тока. При этом необходимо соблюдать требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть.

Аппарат должен обеспечивать максимальную надежность, устойчивость и стабильность, желательно на долгие годы. Стоимость собранных устройств зависит от того, где все необходимые детали будут покупаться.

На видео — самодельный стабилизатор напряжения для светодиодов.

самодельный стабилизатор напряжения для LED / светодиодов

(7

Источник: https://ostabilizatore.ru/stabilizator-naprjazhenija-12-volt-dlja-svetodiodov-v-avto-svoimi-rukami.html

Стоит ли собирать стабилизатор напряжения своими руками

В идеале электросеть может работать эффективно при незначительных перепадах напряжения – не более 10%, как большую, так и в меньшую сторону от номинала 220В. Однако, как показывают реальные условия эксплуатации, изменения эти временами довольно значительны. А это уже грозит выходом из строя подключенных приборов.

И чтобы избежать таких неприятностей, создано такое устройство, как стабилизатор напряжения. И если ток выйдет за границы допустимого значения, устройство в автоматическом режиме обесточит подключенные электроприборы.

Чем еще может быть вызвана необходимость в таком устройстве и почему некоторые люди задумываются над изготовлением самодельного стабилизатора напряжения 220В по схеме? Наличие такого помощника оправдано в силу следующих возможностей:

  • Бытовая техника гарантировано будет работать долгое время.
  • Мониторинг напряжения электросети.
  • Заданный уровень напряжения поддерживается автоматически.
  • Перепады тока не сказываются на электроприборах.

Если в месте проживания такие электрические «аномалии» случаются часто, стоит задуматься над приобретением хорошего стабилизатора. В крайнем случае собрать его самостоятельно.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой.

Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло.

Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю.

В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Разновидности стабилизаторов

Главная составляющая любого такого оберегающего электрического устройства – это его автотрансформатор регулируемого типа. В настоящее время многими производителями выпускается несколько видов приборов, у которых реализована своя технология стабилизации напряжения. К таковым относятся две основные схемы стабилизатора напряжения 220В для дома:

  • Электромеханические.
  • Электронные.

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Существуют еще и феррорезонансные аналоги, которые в быту практически не используются, но о них будет сказано чуть позднее. Теперь же стоит перейти к описанию существующих моделей.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать.

На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение.

Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами – стоком, истоком и затвором.

Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) – полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение.

Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 – 4,7 мкФ.

Электромеханические (сервоприводные) устройства

Регулировка напряжения электросети производится посредством ползунка, который передвигается по обмотке. Одновременно с этим задействуется разное количество витков. Все мы учились в школе, а некоторые может быть имели дело с реостатом на уроках физики.

По такому аналогичному принципу работает электромеханический стабилизатор напряжения. Только перемещение ползунка осуществляется не вручную, а при помощи электродвигателя, называемого сервоприводом. Знать устройство этих приборов просто необходимо, если есть желание изготовить стабилизатор напряжения 220В своими руками по схеме.

Электромеханические устройства отличаются высокой надежностью, и обеспечивают плавную регулировку напряжения. Характерные преимущества:

  • Стабилизаторы работают под любой нагрузкой.
  • Ресурс существенно больше, чем у прочих аналогов.
  • Доступная стоимость (вполовину ниже, чем у электронных приборов)

К сожалению, при всех достоинствах присутствуют и недостатки:

  • В силу механического устройства задержка срабатывания очень заметна.
  • В таких приборах применяются угольные контакты, которые подвержены естественному износу с течением времени.
  • Присутствие шума при работе, хоть и его практически не слышно.
  • Малый рабочий диапазон 140-260 В.

Стоит заметить, что в отличие от инверторного стабилизатора напряжения 220В (своими руками по схеме его можно изготовить вопреки кажущимся сложностям), здесь еще имеется трансформатор.

А что касается принципа работы, то анализ напряжения производится электронным блоком управления. Если он заметит значительные отклонения от номинального значения, он посылает команду на перемещение ползунка.

Схема изготовления стабилизатора на 12в: линейный стабилизатор своими руками

Ток регулируется путем подключения большего количества витков трансформатора. На тот случай, если прибор не успевает своевременно среагировать на чрезмерное превышение напряжения, в устройстве стабилизатора предусмотрено реле.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств.

Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.

Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также биполярный транзистор с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается.

Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения.

В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2.

Предлагаем ознакомиться  Монтаж светодиодной подсветки своими руками

Электронные стабилизаторы

Принцип действия электронных приборов устроен немного иначе. Здесь в основе лежат несколько схем:

  • тиристорная или семисторная;
  • релейная;
  • инверторная.

Работают такие устройства бесшумно, за исключением релейных стабилизаторов. У них переключение режимов осуществляется при помощи силовых реле, которыми управляет электронный блок управления. Поскольку они механически разъединяют контакты, то во время эксплуатации таких приборов время от времени слышен шум. Для кого-то это может быть серьезным минусом.

Поэтому лучшим выбором будет приобретение или изготовление инверторного стабилизатора напряжения 220В своими руками, схему которого найти несложно.

Другие электронные аналоги имеют специальные ключи тиристоры и семисторы и поэтому работают они в бесшумном режиме. Также это позволяет стабилизаторам срабатывать практически мгновенно. Среди прочих достоинств можно выделить:

  • отсутствие нагрева;
  • рабочий диапазон составляет 85-305 В (у релейных приборах он равен 100-280 В);
  • компактные габариты;
  • низкая стоимость (опять-таки применимо к релейным стабилизаторам).

Общий недостаток электронных устройств заключается в ступенчатой схеме регулировки напряжение электросети. К тому же тиристорные приборы имеют самую высокую стоимость, но в то же время и отличаются весьма долгим сроком службы.

Преимущества самодельного устройства

А какую можно реализовать схему стабилизатора напряжения 220В своими руками? Самый простой вариант стабилизатора состоит из минимального количества комплектующих:

  • трансформатор;
  • конденсатор;
  • диоды;
  • резистор;
  • провода (для соединения микросхем).

Используя простейшие навыки, собрать устройство не так сложно, как может показаться. Но при наличии старого сварочного аппарата все упрощается, поскольку он практически уже собран. Однако проблема в том, что не у каждого человека найдется такой сварочный аппарата, а поэтому лучше подыскать другой способ для самодельного устройства.

Читайте также:  Качество электрической энергии дома - анализируем и изучаем показатели

По этой причине рассмотрим, как можно изготовить некоторый аналог симисторного стабилизатора. Данный прибор будет рассчитан на входной рабочий диапазон 130-270 В, а на выход будет подаваться от 205 до 230 В. Большая разница входного тока это скорее плюс, а вот для выходного – это уже минус. Но для многих бытовых приборов эта разница допустима.

Что касается мощности, то схема тиристорного стабилизатора напряжения 220В, своими руками изготавливаемого, допускает подключение электроприборов до 6 кВт. Переключение нагрузки производится в течение 10 миллисекунд.

У стабилизатора, изготовленного самостоятельно, есть своим плюсы и минусы, о которых непременно следует знать. Главные преимущества:

  • низкая стоимость;
  • ремонтопригодность;
  • самостоятельное проведение диагностики.

Самое очевидное достоинство заключается в невысокой себестоимости. Все детали нужно будет приобрести по отдельности, а это все равно несравнимо с готовыми стабилизаторами.

В случае выхода из строя какого-нибудь элемента приобретенного стабилизатора напряжения, вряд ли его можно заменить самому. В этом случае остается только вызывать мастера на дом или везти его в сервисный центр.

Даже если имеются определенные знания в области электротехники, найти подходящую деталь не так просто. Совсем другое дело, если прибор был изготовлен собственноручно.

Все детали уже знакомы и для покупки новой, достаточно наведаться в магазин.

Если кто-либо ранее уже собирал схему стабилизатора напряжения 220В 10кВт своими руками, значит, человек уже разбирается во многих тонкостях. Это значит, что выявить неисправность не составит особого труда.

Недостатки, которые следует учитывать

Теперь коснемся некоторых минусов. Кто и как бы себя ни нахваливал, он не сможет тягаться с настоящими профессионалами по электрической части. По этой простой причине надежность самодельного стабилизатора будет уступать фирменным аналогам. Обусловлено это тем, что на производстве используются высокоточные контрольно-измерительные приборы, которых нет у рядовых потребителей.

Другой момент – более широкий рабочий диапазон напряжения. Если у магазинного варианта он составляет от 215 до 220В, то у аппарата, созданного в домашних условиях, этот параметр будет превышен в 2 или даже 5 раз. А это уже критично для большого количества современной бытовой техники.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Чтобы собрать по схеме электронный стабилизатор напряжения 220В своими руками, не обойтись без таких компонентов:

  • блока питания;
  • выпрямителя;
  • компаратора;
  • контроллера;
  • усилителей;
  • светодиодов;
  • узла задержки;
  • автотрансформатора;
  • оптронных ключей;
  • выключателя-предохранителя.

Также нужен будет паяльник и пинцет.

Советы по монтажу

Некоторые полезные рекомендации, которые позволят правильно эксплуатировать самодельный стабилизатор. После того как устройство собрано, необходимо найти подходящее место, где будет обеспечено хорошая вентиляция.

Необходимо правильно реализовать схему подключения стабилизатора напряжения 220В для дома. И тут есть два способа:

  1. После счетчика – подходит, когда нужно защитить всю электросеть квартиры или дома. Непосредственно на выход от электросчетчика ставится автомат, а регулятор напряжения подключается уже к его выводу. К самому стабилизатору при необходимости тоже можно подключить автоматический выключатель.
  2. Подключение в розетку – в этом случае под защитой окажутся только те приборы, которые подключены к регулятору.

В процессе работы прибор будет греться, а тесное пространство не обеспечит должное охлаждение. В результате стабилизатор быстро выйдет из строя. Оптимальный вариант в этом случае – открытая площадка.

Если это невозможно в силу разных причин, специально для прибора можно соорудить нишу. При этом необходимо выдержать не менее 10 см от поверхности ниши до стенок стабилизатора. После сборки устройства стоит его проверить и обратить внимание на наличие каких-либо посторонних шумов.

После того как по схеме стабилизатор напряжения 220В своими руками успешно создан, не стоит думать, что на этом все заканчивается.

Необходимо каждый год проводить профилактические работы, которые связаны с осмотром стабилизатора и перетяжкой контактов при необходимости.

Только так можно быть уверенным в том, что самодельный «продукт» будет работать также эффективно, как и производственные аналоги.

В качестве заключения

https://youtube.com/video/5hVFpyR7sFA

Вне всякого сомнения, самостоятельное изготовление стабилизатора требует определенных знаний и навыков. Также нужно понимать, как именно работают такие устройства, и знать некоторые нюансы. Помимо этого, потребуется приобрести все необходимые комплектующие и выполнить правильный монтаж.

Возможно, вся работу для кого-то покажется сложной. Поэтому если нет уверенности в своих силах, то лучше пойти в магазин не за деталями, а за самим прибором. К тому же на все модели предусмотрен определенный гарантийный период.

Источник: https://ventcondition.ru/moshchnyy-stabilizator-napryazheniya-svoimi-rukami-printsipialnye-skhemy-poetapnaya-instruktsiya-sborki/

Стабилизатор напряжения 12 вольт

Главная > Теория > Стабилизатор напряжения 12 вольт

Содержание

  • 1 Классический стабилизатор
  • 2 Интегральный стабилизатор
  • 3 Видео

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Стабилизация с помощью стабилитрона

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

Линейный стабилизатор с транзистором

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход.

Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается.

Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения цифровой

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Включение микросхемы 7812

Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.

Увеличение выходного тока

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Источник: https://jelectro.ru/teoriya/stabilizator-napryazheniya-12-volt.html

Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Читайте также:  Обустройство скважины с кессоном: пошаговая технология работ и разбор технических нюансов

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать ~23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см.

характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят!!!

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см2.

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли».

Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что IRн = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED < (358 - 6) / 3.

2, причем, чем их больше, тем выше яркость светильника и тем меньшая мощность будет уходить в никуда (рассеиваться в виде тепла на транзисторе VT1).

Максимальное напряжение Uкэ транзистора VT1 должно быть не ниже 358 — (ULED * NLED).

LM7805, LM7812..

Любой интегральный стабилизатор напряжения можно превратить в стабилизатор тока, добавив всего один резистор в соответствии со схемой:

Только надо учитывать, что, при таком включении, входное напряжение должно быть больше, чем напряжение стабилизации микросхемы на некоторую величину (падение напряжение на самом стабилизаторе). Обычно это где-то 2-2.5 вольта. Ну и, само собой, добавить напряжение на нагрузке.

Вот, например, конкретный пример стабилизатора тока для светодиодов на ЛМ7812:

Потребляемый ток (как и ток через светодиоды) — 300 мА. Мощность светильника ~10 Ватт.

Все параметры схемы рассчитаны на 10 светодиодов SMD 5730-1 с прямым напряжением 3.3 вольта на каждом и максимальным током — 350 мА (см. даташит), покупал тут.

Есть еще очень похожие светодиоды — SMD 5730 (без единички в названии). У них мощность всего 0.5 Вт и максимальный ток 0.18 А. Так что не перепутайте.

Так как при последовательном подключении светодиодов общее напряжение будет равно сумме напряжений на каждом из светодиодов, то минимальное напряжение питания схемы должно быть: Uпит = 2.5 + 12 + (3.3 х 10) = 47.5 Вольт.

Рассчитать сопротивление и мощность резистора под другие значения тока можно с помощью простенькой программки Regulator Design (скачать).

Очевидно, что чем выше выходное напряжение стабилизатора, тем больше тепла будет выделяться на токозадающем резисторе и, следовательно, тем хуже КПД. Поэтому для наших целей лучше подойдет LM7805, чем LM7812.

Но я бы порекомендовал использовать для сборки своими руками драйвер для светодиода на lm317 (см. далее).

LM317

Не менее эффективным получается линейный стабилизатор тока для светодиодов на LM317. Типовая схема включения:

Простейшая схема включения LM317 для светодиодов, позволяющая собрать мощный светильник, состоит из выпрямителя с емкостным фильтром, стабилизатора тока и 93 светодиодов SMD 5630. Здесь применены MXL8-PW35-0000 (3500K, 31 Lm, 100 mA, 3.1 V, 400 mW, 5.3×3 mm).

Если такая большая гирлянда из светодиодов не нужна, то к драйверу на LM317 для питания светодиодов придется добавить балластный резистор или конденсатор (чтобы загасить лишнее напряжение). Как это сделать мы очень подробно рассматривали в этой статье.

Недостаток такой схемы токового драйвера для светодиодов в том, что при повышении напряжения в сети выше 235 вольт, LM317 окажется за пределами расчетного режима работы, а при снижении до ~208 вольт и ниже, микросхема совсем перестает стабилизировать и глубина пульсаций будет целиком и полностью зависеть от емкости С1.

Поэтому использовать такой светильник нужно там, где напряжение более менее стабильно. И на емкости этого конденсатора не стоит экономить. Диодный мост можно взять готовый (например, миниатюрный MB6S) или собрать из подходящих диодов (Uобр не менее 400 В, прямой ток >= 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (!!!) не мерцающих (!!!) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник: https://electro-shema.ru/chertezhi/stabilizator-toka-dlya-svetodiodov.html

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]