Часто возникает проблема определения, какой из электродов является катодом, а какой — анодом. Для начала нужно разобраться с терминами.
Понятие катода и анода — простое объяснение
В сложных веществах электроны между атомами в соединениях распределены неодинаково. В результате взаимодействия частицы перемещаются от атома одного вещества к атому другого. Реакция именуется окислительно-восстановительной. Потеря электронов называется окислением, элемент, отдающий электроны — восстановителем.
Присоединение электронов носит название восстановление, принимающий элемент в этом процессе — окислитель. Переход электронов от восстановителя к окислителю может протекать по внешней цепи, и тогда его можно использовать в качестве источника электрической энергии. Устройства, в которых энергия химической реакции превращается в электрическую энергию, называются гальваническими элементами.
Простейший классический пример гальванического элемента — две пластины, изготовленные из различного металла и погруженные в раствор электролита. В такой системе окисление происходит на одном металле, а восстановление — на другом.
ВАЖНО! Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление — катодом.
Из школьных учебников химии известен пример медно-цинкового гальванического элемента, работающего за счет энергии реакции между цинком и сульфатом меди.
В устройстве Якоби — Даниэля пластина из меди помещена в раствор сульфата меди (медный электрод), цинковая пластина погружена в раствор сульфата цинка (цинковый электрод).
Цинковый электрод отдает катионы в раствор, создавая в нем избыточный положительный заряд, а у медного электрода раствор обедняется катионами, здесь раствор заряжен отрицательно.
Замыкание внешней цепи заставляет электроны перетекать от цинкового электрода к медному. Равновесные отношения на границах фаз прерываются. Идёт окислительно-восстановительная реакция.
Как правильно спаять два провода паяльником?
Энергия самопроизвольно протекающей химической реакции превращается в электрическую.
Если химическую реакцию провоцирует внешняя энергия электрического тока, идёт процесс, называемый электролизом. Процессы, протекающие при электролизе, обратны процессам, протекающим при работе гальванического элемента.
ВНИМАНИЕ! Электрод, на котором происходит восстановление, также называется катодом, но при электролизе он заряжен отрицательно, а анод — положительно.
Применение в электрохимии
Аноды и катоды принимают участие во многих химических реакциях:
- Электролиз;
- Электроэкстракция;
- Гальваностегия;
- Гальванопластика.
Электролизом расплавленных соединений и водных растворов получают металлы, производят очистку металлов от примесей и извлечение ценных компонентов (электролитическое рафинирование). Из металла, подлежащего очистке, отливают пластины. Они помещаются в качестве анодов в электролизер. Под воздействием электрического тока металл подвергается растворению.
Его катионы переходят в раствор и разряжаются на катоде, образуя осадок чистого металла. Примеси, содержащиеся в первоначальной неочищенной металлической пластине, либо остаются нерастворимыми в виде анодного шлама, либо переходят в электролите, откуда удаляются. Электролитическому рафинированию подвергают медь, никель, свинец, золото, серебро, олово.
Электроэкстракция — процесс выделения металла из раствора в ходе электролиза. Для того чтобы металл перешёл в раствор, его обрабатывают специальными реагентами. В ходе процесса на катоде происходит выделение металла, характеризующегося высокой чистотой. Так получают цинк, медь, кадмий.
Чтобы избежать коррозии, придать прочность, украсить изделие поверхность одного металла покрывают слоем другого. Этот процесс называется гальваностегией.
Гальванопластика — процесс получения металлических копий с объёмных предметов электроосаждением металла.
Применение в вакуумных электронных приборах
Принцип действия катода и анода в вакуумном приборе может продемонстрировать электронная лампа. Она выглядит как герметически запаянный сосуд с металлическими деталями внутри. Прибор используется для выпрямления, генерирования и преобразования электрических сигналов. По числу электродов выделяют:
- диоды;
- триоды;
- тетроды;
- пентоды и т.д.
Как перевести амперы в киловаты?
Диод — вакуумный прибор с двумя электродами, катодом и анодом. Катод подключен к отрицательному полюсу источника питания, анод — к положительному. Предназначение катода — испускать электроны под действием нагрева электрическим током до определенной температуры.
Посредством испущенных электронов создается пространственный заряд между катодом и анодом. Самые быстрые электроны устремляются к аноду, преодолевая отрицательный потенциальный барьер объемного заряда. Анод принимает эти частицы. Создается анодный ток во внешней цепи.
Электронным потоком управляют с помощью дополнительных электродов, подавая на них электрический потенциал. Посредством диодов переменный ток преобразуется в постоянный.
Применение в электронике
Сегодня используется полупроводниковые типы диодов.
В электронике широко используется свойство диодов пропускать ток в прямом направлении и не пропускать в обратном.
Работа светодиода основана на свойстве кристаллов полупроводников светиться при пропускании через p-n переход тока в прямом направлении.
Гальванические источники постоянного тока — аккумуляторы
Химические источники электрического тока, в которых протекают обратимые реакции, называются аккумуляторами: их перезаряжают и используют многократно.
При работе свинцового аккумулятора происходит окислительно-восстановительная реакция. Металлический свинец окисляется, отдает свои электроны, восстанавливая диоксид свинца, принимающего электроны. Металлический свинец в аккумуляторе — анод, он заряжен отрицательно. Диоксид свинца — катод и заряжен положительно.
По мере разряда аккумулятора расходуются вещества катода и анода и их электролита, серной кислоты. Чтобы зарядить аккумулятор, его подключают к источнику тока (плюсом к плюсу, минусом к минусу). Направление тока теперь обратное тому, какое было при разряде аккумулятора.
Электрохимические процессы на электродах «обращаются». Теперь свинцовый электрод становится катодом, на нем проходит процесс восстановления, а диоксид свинца — анодом, с протекающей процедурой окисления. В аккумуляторе вновь создаются вещества, необходимые для его работы.
Почему существует путаница?
Проблема возникает из-за того, что определенный знак заряда не может быть прочно закреплен за анодом или катодом. Часто катодом является положительно заряженный электрод, а анодом — отрицательный. Часто, но не всегда. Все зависит от процесса, протекающего на электроде.
ВНИМАНИЕ! Деталь, которую поместили в электролит, может быть и анодом и катодом. Все зависит от цели процесса: нужно нанести на нее другой слой металла или снять его.
Как определить анод и катод
В электрохимии анод — это электрод, на котором идут процессы окисления, катод — это электрод, где происходит восстановление.
Сколько ватт в киловатте?
У диода отводы называются анод и катод. Ток будет идти через диод, если отвод анод подключить к «плюсу», отвод «катод» — к «минусу».
У нового светодиода с необрезанными контактами анод и катод определяются визуально по длине. Катод короче.
Если контакты обрезаны, поможет батарейка, приложенная к ним. Свет появится, когда полярности совпадут.
Знак анода и катода
В электрохимии речь правильнее вести не о знаках зарядов электродов, а о процессах, на них идущих. На катоде проходит реакция восстановления, на аноде — окисления.
В электротехнике для протекания тока катод подключают к отрицательному полюсу источника тока, анод — к положительному.
Источник: https://odinelectric.ru/knowledgebase/chto-takoe-anod-i-katod
Как определить катод и анод
Эти физические термины затрагивают области гальваники, химии, а также источников питания, полупроводниковой и вакуумной электроники.
Зная, что такое анод и катод можно, к примеру, разобраться почему греется телефон. В статье описывается, что из себя представляют анод и катод, объясняется катод и анод – это плюс или минус.
Помимо этого, затрагиваются аспекты и нюансы заряда катода и анода.
Анод и катод. Что это такое
Анод – является электродом, через который электрический ток проникает в устройство. Он является противоположностью катоду, электроду, через который электрический ток покидает электрическое устройство.
Направление электрического тока в цепи отличается вектора потока электронов. В связи с этим (отрицательно заряженные) электроны вытекают из анода во внешний контур.
Анод в гальваническом элементе представлен электродом, где происходит реакция окисления.
Эти понятия обусловлены не полярностью напряжения электродов, а направлением тока через электрод. Если ток, который идёт через электроды, изменяет своё направление, как это происходит, например, в перезаряжаемой батарее (во время зарядки), анод и катод меняются местами.
Обычный ток зависит не только от направления движения носителей заряда, но и от электрозаряда носителей. Электрический ток вне устройства обычно переносится электронами в проводнике из металла.
Так как электроны обладают зарядом со значением «минус», направление их потока противопоставляется направлению стандартного тока.
Из этого следует, что электроны уходят из аппарата через анод и попадают в устройство через катод.
Полярность напряжения на аноде по отношению к связанному катоду меняется из-за разновидности аппарата и его режима работы. В представленных примерах анод является отрицательным в устройстве (обеспечивает питание) и положительным в устройстве, которое потребляет энергию. В разных областях применения анод может быть положительным или отрицательный.
Анод в гальваническом элементе
Тут он является отрицательным выводом, потому что именно там обычный ток протекает в устройство (элемент аккумулятора). Этот внутренний электрический ток переносится извне электронами, движущимися наружу. Притом отрицательный заряд, протекающий в одном направлении, электрически эквивалентен положительному заряду, который протекает противоположном направлении.
В перезаряжаемой батарее или в электролизере
Здесь же анод является положительным выводом, который получает ток от внешнего генератора. Ток через перезаряжаемую батарею противоположен направлению тока во время разряда. Иными словами, электрод, который был катодом во время разрядки батареи, становится анодом во время процесса её зарядки.
Электронно-лучевая труба
Тут является положительным выводом, через который электроны вытекают из устройства. Иначе: туда, где течет положительный электрический ток.
Вакуумная трубка анода
В электронных вакуумных устройствах, таких как электронно-лучевая трубка, анод – это положительно заряженный электронным коллектор. В трубке анод представляет собой заряженную положительную пластину, которая собирает электроны, испускаемые катодом через электрическое притяжение. Это параллельно ускоряет поток этих электронов.
В электрохимии анод находится там, где происходит окисление, и является контактом с положительной полярностью в электролизере. На аноде электрические потенциалы заставляют анионы (отрицательные ионы) вступать в химическую реакцию и испускать электроны (окисление), которые затем попадают в цепь управления.
Диодный анод
В полупроводниковом диоде анодом является легированным слоем P, который изначально создает отверстия для соединения.
В области соединения отверстия, подаваемые анодом, объединяются с электронами, подаваемыми из области с N-легированием, создавая истощённую зону.
Когда положительное напряжение подается на анод диода из схемы, большее количество отверстий может быть перенесено в обедненную область, и это приводит к тому, что диод становится проводящим, позволяя току протекать по цепи.
Термины «анод» и «катод» не должны применяться к стабилитрону, так как он даёт возможность протекать току в любом направлении в зависимости от полярности напряжения.
В электрохимии
Тут анод расположен там, где происходит окисление, и является контактом с положительной полярностью в электролизере. На аноде электрические потенциалы заставляют анионы (отрицательные ионы) вступать в химическую реакцию и испускать электроны (окисление), которые затем попадают в цепь управления.
Такой процесс широко применяется для рафинирования металлов. При рафинировании меди медные аноды (те промежуточные продукты из печей) претерпевают электролиз в подходящем растворе (таком как серная кислота) для получения катодов высокой чистоты. Медные катоды, полученные с использованием этого метода, также называют электролитической медью.
Катод – это электрод, от которого обычный ток покидает электрический аппарат. Тут у электронов заряд электрический заряд под знаком «минус», поэтому движение электронов противоположно движению обычного потока тока. Катодный электрический ток отходит, что также означает, что электроны поступают в катод устройства из внешней цепи.
Полярность катода и анода – это положительное или отрицательное значение, что зависит от работы устройства. Хотя положительно заряженные катионы всегда движутся к катоду (отсюда и их название), а отрицательно заряженные анионы удаляются от него, полярность катода зависит от типа устройства и может даже варьироваться в зависимости от режима работы.
В устройстве, поглощающем энергию заряда (зарядка батареи), катод является отрицательным (электроны вытекают из катода, и заряд проникает туда) и в аппарате, который снабжает энергией (используемая батарея), катод положительный (электроны втекают в него и заряд уходит).
Используемая батарея обладает катодом (положительный вывод), поскольку именно там ток течет из устройства. Этот внешний ток переносится изнутри положительными ионами, движущимися от электролита к положительному катоду (химическая энергия отвечает за движение в гору).
Это поддерживается электронами, которые направляются к батарее.
Например, медный электрод гальванического элемента Даниэля является положительным выводом и одновременно катодом. Это происходит тогда, когда заряд поступает в батарею.
Например, изменение направления тока в гальваническом элементе Даниэля превращает его в электролизер. Тут медный электрод одновременно является как положительным выводом, так и анодом.
В диоде катод является отрицательным выводом на остроконечном конце символа стрелки, откуда ток течет из устройства.
В электролизере на катоде применяется отрицательная полярность для активации элемента. Общими результатами восстановления на катоде являются газообразный водород или чистый металл из ионов металлов.
Говоря об относительной восстановительной способности двух окислительно-восстановительных агентов, считается, что пара для генерирования большего количества восстанавливающих веществ является более «катодной» по сравнению с более легко восстанавливаемым реагентом.
Как определить анод и катод
Электрическая схема катода и анода:
Различие между катодом и анодом основано исключительно на токе, а не на напряжении. Металл, используемый для катода, имеет значительно большее количество электронов, чем нейтроны или протоны.
Например, один из потребителей энергии находится в прямом включении. Далее, ток по аноду из внешней цепи проникает в элемент. Во внешнюю цепь прямо через катод из элемента выходит электрический ток. Это чем-то напоминает перевёрнутое изображение.
Если данные обозначения сложные, то тут разобраться с ними могут только химики. Теперь надо сделать обратное включение. В этом случае диоды полупроводникового типа почти не будут проводить электрический ток.
Тем не менее, есть вероятность обратного пробоя у элементов.
Электровакуумные диоды (например, радиолампы) совсем не обладают способностью проводить ток обратного типа. Условно принято считать, что ток через них не протекает. В связи с этим формально выводы анода и катода у диодов не отвечают за выполнение этих функций.
При катодной защите металлический анод электрически связан с защищаемой системой и частично разъедает или растворяет металл защищаемой системы. Этот металлический анод большей степени реагирует на коррозионную среду защищаемой системы. Корпус железного или стального судна может быть защищен цинковым анодом, который растворяется в морской воде и предотвращает коррозию корпуса.
Менее очевидным примером такого типа защиты является процесс цинкования железа. Такой процесс покрывает железные конструкции (такие как ограждение) покрытием из металлического цинка. Пока цинк остается неповрежденным, железо защищено от коррозии. С течением времени цинковое покрытие становится поврежденным, в результате потрескивания или физического повреждения.
Знание того, что такое анод и катод, является ключевым в электрохимии и помогает понять основные принципы работы простейших аккумуляторов и гальванических элементов.
Источник: https://StroyVopros.net/elektrika/poleznaya-informatsiya/katod-i-anod.html
Схемотехника: Знаем ли мы, что такое АНОД? и что такое КАТОД?
Данная статья родилась как разбор статьи: «Б.Г.Хасапова — Знаем ли мы, что такое АНОД?» «Автор статьи больше всего боится, что неискушённый читатель далее заголовка читать не станет.
Многие считают, что определение терминов анод и катод известно каждому грамотному человеку… Но не так много можно найти вещей страшнее полузнания. (примечание: это и называется „ложью“ — поверхностные и искажённые знания) Ошибкам в применении терминов АНОД и КАТОД нет числа…
» «Катод – отрицательный электрод, анод – положительный»? Нет, ложь!
«ГОСТ 15596-82. ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ.
Термины и определения» на странице 3 даёт точное определение: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом» [через него в источник электрический ток входит из внешней цепи].
То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом» [через него из источника электрический ток выходит во внешнюю цепь].
Сами термины ввёл М.Фарадей (в январе 1834г.
, «во избежание неясности и неопределенности, а также ради большей точности»): «Поверхности, у которых электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов… Если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца: назвать ту поверхность, которая направлена на восток – анодом, а ту, которая направлена на запад – катодом.» Примерное толкование: «анод – ВОСХОД, путь солнца вверх — ток входит», «катод – ЗАХОД, путь солнца вниз — ток выходит»… С направлением тока эти термины связаны весьма опосредованно, поэтому запоминать лучше ГОСТовское определение или следующие:
В радиолампе/диоде (потребителе электроэнергии) в ПРЯМОМ ВКЛЮЧЕНИИ («в открытом состоянии»): в Анод — [из внешней цепи, в элемент] входит электрический ток. (Не путать с направлением электронов!) Катод — соответственно, электрод из которого выходит электрический ток [во внешнюю цепь, из элемента].
Однако, замечание: При ОБРАТНОМ ВКЛЮЧЕНИИ (когда «вентиль закрывается») — полупроводниковые диоды практически не проводят электрический ток («обратный пробой» не считаем), а электровакуумные диоды (радиолампы, кенотроны) вообще не проводят обратный ток. В виду этого, условно принято считать, что обратный ток через диоды не идёт. (Но в этом случае, у выводов диода [формально] отсутствуют функции «катод» и «анод»!)
Поэтому для ясности решили: у диодных элементов (в отличие от аккумуляторов) названия выводов «катод» и «анод» — не меняются от схемы включения, и жёстко привязаны к физическим выводам (электродам) прибора, в зависимости от внутреннего строения прибора (в полупроводниковых диодах — в привязке к типам проводимости кристаллов; в электронных лампах — в привязке к электроду эмитирующему электроны, где находится нить накала). Впрочем, через полупроводниковые приборы (разновидности диода) «стабилитрон» и «супрессор» — обратный ток даже течёт «немножко», но это уже другая история, не меняющая существующего порядка наименований и определений… Как заметил TheLongRunSmoke : «В случае с кенотроном, включив его в обратном направлении — физический смысл электродов изменится, но наименование электродов не изменится.» Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах – зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным, хотя полярность электродов не меняется. В зависимости от этого назначение электродов будет разным:
- При зарядке — положительный электрод будет принимать электрический ток (Анод), а отрицательный отпускать (Катод).
- При разрядке – наоборот, положительный электрод будет отпускать электрический ток (Катод), а отрицательный принимать (Анод).
- При отсутствии движения электрического тока — разговоры об аноде и катоде бессмысленны.
Далее, рассмотрим другую отрасль:
В электрохимии пользуются другими определениями, более понятными читателю и специалисту: «анод – это электрод, где протекают окислительные процессы«, а «катод – это электрод, где протекают восстановительные процессы«.
Но в этой терминологии нет места электронным приборам и схемотехнике — поэтому трудно сказать, как тут течёт ток?
Определение:
В химических окислительно-восстановительных реакциях:
- Процесс отдачи электронов частицей — называется «окислением» (при этом: нейтральная частица превращается в положительный ион [металлы], а отрицательный ион — нейтрализуется).
- Процесс принятия электронов частицей — называется «восстановлением» (при этом: положительный ион нейтрализуется [металлы], а нейтральная частица превращается в отрицательный ион).
- Частицы, отдающие электроны, называются «восстановители», они окисляются. Частицы, принимающие электроны, называются «окислителями», они восстанавливаются.
- В химических окислительно-восстановительных реакциях «окисление» и «восстановление» взаимосвязаны (общее число электронов отдаваемых всеми восстановителями равно общему числу электронов, присоединяемых всеми окислителями).
(Здесь: Частица = атом, молекула или ион. Ион = не нейтральная частица.)
Определение:
Заряд иона кратен заряду электрона. Понятия и термины «ион», «катион», «аонион» — также ввёл М.Фарадей (в 1834 году):
- Катионы — положительно заряженные ионы, движущиеся в растворе электролита к отрицательному полюсу (катоду).
- Анионы — отрицательно заряженные ионы, движущиеся в растворе электролита к положительному полюсу (аноду).
Определение:
Электрохимические процессы — это окислительно-восстановительные реакции, которые сопровождаются возникновением электрического тока или вызываются электрическим током. Выделяют две группы электрохимических процессов:
- процессы превращения электрической энергии в химическую (электролиз);
- процессы превращения химической энергии в электрическую (гальванические элементы).
В электрохимических процессах окислительная и восстановительная полуреакции пространственно разделены, а электроны переходят от «восстановителя» к «окислителю» не непосредственно, а по проводнику внешней цепи, создавая электрический ток (здесь наблюдается взаимное превращение химической и электрической форм энергии).
Простейшая электрохимическая система состоит из двух электродов – проводников первого рода с электронной проводимостью, находящихся в контакте с жидким (раствор, расплав) или твердым электролитом — ионным проводником второго рода. Электроды замыкаются металлическим проводником, образующим внешнюю цепь электрохимической системы… Данное определение ЗАВИСИТ от причины, инициирующей электрический ток:
* В гальванических элементах — разность потенциалов между электродами (по определению ГОСТ 15596-82: '+' на Катоде, '-' на Аноде) возникает ВНУТРИ самого элемента, из-за химических процессов между электролитом и электродами (элемент является ГЕНЕРАТОРОМ) — источник энергии во внешней цепи не требуется, электрический ток и так потечёт во внешнюю цепь из элемента (через его катод).
* А при электролизе/легировании/зарядке аккумулятора, когда происходящие в электролите химические реакции требуют поглощения внешней энергии (элемент является ПОТРЕБИТЕЛЕМ) — требуется внешний источник электрического тока, включённый в разрыв проводника внешней цепи — он будет ИЗВНЕ создавать разность потенциалов между электродами, и ИЗВНЕ вкачивать ток в элемент (через его анод). С этой точки зрения, как для всех потребителей энергии в электрической цепи, как и для обычного диода: электрод, в который входит ток, называется анод — на нём ИЗВНЕ поддерживается больший потенциал '+'. А на Катоде, соответственно, ИЗВНЕ поддерживается меньший потенциал '-'.
Хотя тут есть маленькая путаница, требуется важное замечание: по определению электрохимии, и в этом случае, на аноде всё равно будут протекать «окислительные процессы», а на катоде – «восстановительные процессы». Тип химических реакций на Аноде и Катоде остался прежний, хотя анод и катод сменили знаки! Как так? На самом деле, не Анод и Катод сменили знаки, а это физические электроды, сохранив знаки полярности, сменили роль и название: тот электрод, что в гальваническом источнике испускал ток и назывался Катодом -> теперь называется Анод; а вместо Анода -> Катод. Это потому что теперь электрический ток толкается ИЗВНЕ, причём в обратную сторону — направление тока изменилось, соответственно, и физические электроды сменили название. Например: '-' электрод, который в гальваническом элементе (при разряде) «окислялся» — в режиме потребителя тока (при заряде) «восстанавливается» — на этом принципе работает зарядка аккумулятора. Пример: Опущенная в электролит для никелирования («восстановления») или для электрохимического полирования («окисления») — деталь может быть и катодом и анодом — в зависимости от того наносится на нее другой слой [положительных ионов] металла или снимается. Требуется внешний источник питания…
Пояснение: при никелировании, на детали-электроде необходимо поддерживать отрицательный заряд, чтобы из раствора электролита на неё притягивались и осаждались («восстанавливались») положительные ионы металла — ток из такого электрода должен выходить во внешнюю цепь (а электроны, соответственно, поступать из внешней цепи) — это катод.
Статью «Б.Г.Хасапова — История одного парадокса электротехники» В каком направлении течёт электрический ток? Почему электроны текут в другом направлении? Кому этот парадокс мешает больше всех, и не поменять ли принятые представления?
Источник: https://we.easyelectronics.ru/Theory/shemotehnika-znaem-li-my-chto-takoe-anod-i-chto-takoe-katod.html
Знаем ли мы: что такое АНОД? и что такое КАТОД?
{lang: 'ru'}
Автор статьи: Celeron
Дата: 09 марта 2013
Данная статья родилась как разбор статьи: “Б.Г.Хасапова — Знаем ли мы, что такое АНОД?“
“Автор статьи больше всего боится, что неискушённый читатель далее заголовка читать не станет.
Многие считают, что определение терминов анод и катод известно каждому грамотному человеку… Но не так много можно найти вещей страшнее полузнания.
(примечание: это и называется “ложью” — поверхностные и искажённые знания) Ошибкам в применении терминов АНОД и КАТОД нет числа…”
“Катод – отрицательный электрод, анод – положительный”? Нет, ложь!
«ГОСТ 15596-82. ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ.
Термины и определения» на странице 3 даёт точное определение: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом» [через него в источник электрический ток входит из внешней цепи].
То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом» [через него из источника электрический ток выходит во внешнюю цепь].
Сами термины ввёл М.Фарадей (в январе 1834г.
, “во избежание неясности и неопределенности, а также ради большей точности”): «Поверхности, у которых электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов… Если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца: назвать ту поверхность, которая направлена на восток – анодом, а ту, которая направлена на запад – катодом.» Примерное толкование: “анод – ВОСХОД, путь солнца вверх — ток входит”, “катод – ЗАХОД, путь солнца вниз — ток выходит”… С направлением тока эти термины связаны весьма опосредованно, поэтому запоминать лучше ГОСТовское определение или следующие:
В радиолампе/диоде (потребителе электроэнергии) в ПРЯМОМ ВКЛЮЧЕНИИ (“в открытом состоянии”): в Анод — [из внешней цепи, в элемент] входит электрический ток. (Не путать с направлением электронов!) Катод — соответственно, электрод из которого выходит электрический ток [во внешнюю цепь, из элемента].
Однако, замечание: При ОБРАТНОМ ВКЛЮЧЕНИИ (когда “вентиль закрывается”) — полупроводниковые диоды практически не проводят электрический ток (“обратный пробой” не считаем), а электровакуумные диоды (радиолампы, кенотроны) вообще не проводят обратный ток. В виду этого, условно принято считать, что обратный ток через диоды не идёт.
(Но в этом случае, у выводов диода [формально] отсутствуют функции “катод” и “анод”!)
Поэтому для ясности решили: у диодных элементов (в отличие от аккумуляторов) названия выводов “катод” и “анод” — не меняются от схемы включения, и жёстко привязаны к физическим выводам (электродам) прибора, в зависимости от внутреннего строения прибора (в полупроводниковых диодах — в привязке к типам проводимости кристаллов; в электронных лампах — в привязке к электроду эмитирующему электроны, где находится нить накала).
Впрочем, через полупроводниковые приборы (разновидности диода) “стабилитрон” и “супрессор” — обратный ток даже течёт “немножко”, но это уже другая история, не меняющая существующего порядка наименований и определений…
Замечание: “В случае с кенотроном, включив его в обратном направлении — физический смысл электродов изменится, но наименование электродов не изменится.”
Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах – зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным, хотя полярность электродов не меняется. В зависимости от этого назначение электродов будет разным:
- При зарядке — положительный электрод будет принимать электрический ток (Анод), а отрицательный отпускать (Катод).
- При разрядке – наоборот, положительный электрод будет отпускать электрический ток (Катод), а отрицательный принимать (Анод).
- При отсутствии движения электрического тока — разговоры об аноде и катоде бессмысленны.
Далее, рассмотрим другую отрасль:
В электрохимии пользуются другими определениями, более понятными читателю и специалисту: “анод – это электрод, где протекают окислительные процессы“, а “катод – это электрод, где протекают восстановительные процессы“.
Но в этой терминологии нет места электронным приборам и схемотехнике — поэтому трудно сказать, как тут течёт ток?
Определение:
В химических окислительно-восстановительных реакциях:
- Процесс отдачи электронов частицей — называется “окислением” (при этом: нейтральная частица превращается в положительный ион [металлы], а отрицательный ион — нейтрализуется).
- Процесс принятия электронов частицей — называется “восстановлением” (при этом: положительный ион нейтрализуется [металлы], а нейтральная частица превращается в отрицательный ион).
- Частицы, отдающие электроны, называются “восстановители”, они окисляются. Частицы, принимающие электроны, называются “окислителями”, они восстанавливаются.
- В химических окислительно-восстановительных реакциях “окисление” и “восстановление” взаимосвязаны (общее число электронов отдаваемых всеми восстановителями равно общему числу электронов, присоединяемых всеми окислителями).
(Здесь: Частица = атом, молекула или ион. Ион = не нейтральная частица.)
Определение:
Заряд иона кратен заряду электрона. Понятия и термины “ион”, “катион”, “аонион” — также ввёл М.Фарадей (в 1834 году):
- Катионы — положительно заряженные ионы, движущиеся в растворе электролита к отрицательному полюсу (катоду).
- Анионы — отрицательно заряженные ионы, движущиеся в растворе электролита к положительному полюсу (аноду).
Определение:
Электрохимические процессы — это окислительно-восстановительные реакции, которые сопровождаются возникновением электрического тока или вызываются электрическим током. Выделяют две группы электрохимических процессов:
- процессы превращения электрической энергии в химическую (электролиз);
- процессы превращения химической энергии в электрическую (гальванические элементы).
В электрохимических процессах окислительная и восстановительная полуреакции пространственно разделены, а электроны переходят от “восстановителя” к “окислителю” не непосредственно, а по проводнику внешней цепи, создавая электрический ток (здесь наблюдается взаимное превращение химической и электрической форм энергии).
Простейшая электрохимическая система состоит из двух электродов – проводников первого рода с электронной проводимостью, находящихся в контакте с жидким (раствор, расплав) или твердым электролитом — ионным проводником второго рода. Электроды замыкаются металлическим проводником, образующим внешнюю цепь электрохимической системы…
Итак: что есть Катод? что есть Анод?
Данное определение ЗАВИСИТ от причины, инициирующей электрический ток:
* В гальванических элементах — разность потенциалов между электродами (по определению ГОСТ 15596-82: ‘+’ на Катоде, ‘-‘ на Аноде) возникает ВНУТРИ самого элемента, из-за химических процессов между электролитом и электродами (элемент является ГЕНЕРАТОРОМ) — источник энергии во внешней цепи не требуется, электрический ток и так потечёт во внешнюю цепь из элемента (через его катод).
* А при электролизе/легировании/зарядке аккумулятора, когда происходящие в электролите химические реакции требуют поглощения внешней энергии (элемент является ПОТРЕБИТЕЛЕМ) — требуется внешний источник электрического тока, включённый в разрыв проводника внешней цепи — он будет ИЗВНЕ создавать разность потенциалов между электродами, и ИЗВНЕ вкачивать ток в элемент (через его анод). С этой точки зрения, как для всех потребителей энергии в электрической цепи, как и для обычного диода: электрод, в который входит ток, называется анод — на нём ИЗВНЕ поддерживается больший потенциал ‘+’. А на Катоде, соответственно, ИЗВНЕ поддерживается меньший потенциал ‘-‘.
Хотя тут есть маленькая путаница, требуется важное замечание: по определению электрохимии, и в этом случае, на аноде всё равно будут протекать “окислительные процессы”, а на катоде – “восстановительные процессы”. Тип химических реакций на Аноде и Катоде остался прежний, хотя анод и катод сменили знаки! Как так?
На самом деле, не Анод и Катод сменили знаки, а это физические электроды, сохранив знаки полярности, сменили роль и название: тот электрод, что в гальваническом источнике испускал ток и назывался Катодом -> теперь называется Анод; а вместо Анода -> Катод. Это потому что теперь электрический ток толкается ИЗВНЕ, причём в обратную сторону — направление тока изменилось, соответственно, и физические электроды сменили название. Например: ‘-‘ электрод, который в гальваническом элементе (при разряде) “окислялся” — в режиме потребителя тока (при заряде) “восстанавливается” — на этом принципе работает зарядка аккумулятора.
Пример
Пример: Опущенная в электролит для никелирования (“восстановления”) или для электрохимического полирования (“окисления”) — деталь может быть и катодом и анодом — в зависимости от того наносится на нее другой слой [положительных ионов] металла или снимается. Требуется внешний источник питания…
Пояснение: при никелировании, на детали-электроде необходимо поддерживать отрицательный заряд, чтобы из раствора электролита на неё притягивались и осаждались (“восстанавливались”) положительные ионы металла — ток из такого электрода должен выходить во внешнюю цепь (а электроны, соответственно, поступать из внешней цепи) — это катод.
Смотри также
Обсудить эту статью «Знаем ли мы: что такое АНОД? и что такое КАТОД?» на форуме…
Почитать другие статьи автора Celeron (в его личном блоге)…
Почитать похожую статью «Б.Г.Хасапова — История одного парадокса электротехники»
В каком направлении течёт электрический ток? Почему электроны текут в другом направлении? Кому этот парадокс мешает больше всех, и не поменять ли принятые представления?
Источник: https://blog.e-voron.dp.ua/znaem-li-myi-chto-takoe-anod-i-chto-takoe-katod/
Электролиз | CHEMEGE.RU
Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.
Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну.
Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды.
Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.
При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы. Положительно заряженный электрод (анод) притягивает отрицательно заряженные частицы (анионы). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.
Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза.
Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются.
Их изготавливают из неактивных металлов, например, платины, или графита.
Электролиз растворов
Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.
Катодные процессы
В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений:
Каждый металл характеризуется значением электрохимического потен-циала.
Чем меньше потенциал, тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла.
Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.
Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H+.
При электролизе растворов солей на катоде наблюдаются следующие закономерности:
1.
Если металл в соли — активный (до Al3+ включительно в ряду напряжений), то вместо металла на катоде восстанавливается (разряжается) водород, т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH—, среда возле катода — щелочная:
- 2H2O +2ē → H2 + 2OH—
- Например, при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.
- 2. Если металл в соли – средней активности (между Al3+ и Н+), то на катоде восстанавливается (разряжается) и металл, и водород, так как потенциал таких металлов сравним с потенциалом водорода:
- Men+ + nē → Me0
- 2H+2O +2ē → H20 + 2OH—
- Например, при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:
- Fe2+ + 2ē → Fe0
- 2H+2O +2ē → H20 + 2OH—
- 3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов), то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:
- Men+ + nē → Me0
- Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:
- Cu2+ + 2ē → Cu0
- 4. Если на катод попадают катионы водорода H+, то они и восстанавливаются до молекулярного водорода:
- 2H+ + 2ē → H20
Анодные процессы
Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H2O-2).
- При электролизе растворов солей на аноде наблюдаются следующие закономерности:
- 1. Если на анод попадает бескислородный кислотный остаток, то он окисляется до свободного состояния (до степени окисления 0):
- неМеn- – nē = неМе0
- Например: при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:
- 2Cl— – 2ē = Cl20
Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент.
Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение. Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода.
Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы:
- 2H2O-2 – 4ē → O20+ 4H+
- 2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион, то окислению подвергается вода с выделением молекулярно-го кислорода:
- 2H2O-2 – 4ē → O20 + 4H+
- 3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:
- 4O-2H– – 4ē → O20 + 2H2O
4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.
Например, при электролизе растворов ацетатов выделяется углекислый газ и этан:
2CH3C+3OO– –2ē → 2C+4O2+ CH3-CH3
Суммарные процессы электролиза
- Рассмотрим электролиз растворов различных солей.
- Например, электролиз раствора сульфата меди.
На катоде восстанавливаются ионы меди:
- Катод (–): Cu2+ + 2ē → Cu0
- На аноде окисляются молекулы воды:
- Анод (+): 2H2O-2 – 4ē → O2 + 4H+
- Сульфат-ионы в процессе не участвуют.
Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:
- 2Cu2+SO4 + 2H2O-2 → 2Cu0 + 2H2SO4 + O20
- Электролиз раствора хлорида натрия выглядит так:
- На катоде восстанавливается водород:
- Катод (–): 2H+2O +2ē → H20 + 2OH–
- На аноде окисляются хлорид-ионы:
- Анод (+): 2Cl– – 2ē → Cl20
- Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия:
- 2H+2O +2NaCl– → H20 + 2NaOH + Cl20
- Следующий пример: электролиз водного раствора карбоната калия.
- На катоде восстанавливается водород из воды:
- Катод (–): 2H+2O +2ē → H20 + 2OH–
- На аноде окисляются молекулы воды до молекулярного кислорода:
- Анод (+): 2H2O-2 – 4ē → O20 + 4H+
- Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:
- 2H2+O-2 → 2H20 + O20
- Еще один пример: электролиз водного раствора хлорида меди (II).
- На катоде восстанавливается медь:
- Катод (–): Cu2+ + 2ē → Cu0
- На аноде окисляются хлорид-ионы до молекулярного хлора:
- Анод (+): 2Cl– – 2ē → Cl20
- Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:
- Cu2+Cl2– → Cu0 + Cl20
- Еще несколько примеров: электролиз раствора гидроксида натрия.
- На катоде восстанавливается водород из воды:
- Катод (–): 2H+2O +2ē → H20 + 2OH–
- На аноде окисляются гидроксид-ионы до молекулярного кислорода:
- Анод (+): 4O-2H– – 4ē → O20 + 2H2O
- Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:
- 2H2+O-2 → 2H20 + O20
Электролиз расплавов
При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.
- Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:
- Катод (–): Na+ + ē → Na0
- На аноде окисляются анионы хлора:
- Анод (+): 2Cl– – 2ē → Cl20
- Суммарное уравнение электролиза расплава хлорида натрия:
- 2Na+Cl– → 2Na0 + Cl20
- Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:
- Катод (–): Na+ + ē → Na0
- На аноде окисляются гидроксид-ионы:
- Анод (+): 4OH– – 4ē → O20 + 2H2O
- Суммарное уравнение электролиза расплава гидроксида натрия:
- 4Na+OH– → 4Na0 + O20 + 2H2O
- Многие металлы получают в промышленности электролизом расплавов.
Например, алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100оС), чем оксид алюминия (2050оС). А оксид алюминия отлично растворяется в расплавленном криолите.
- В растворе криолите оксид алюминия диссоциирует на ионы:
- Al2O3 = Al3+ + AlO33-
- На катоде восстанавливаются катионы алюминия:
- Катод (–): Al3+ + 3ē → Al0
- На аноде окисляются алюминат-ионы:
- Анод (+): 4AlO33– – 12ē → 2Al2O3 + 3O20
- Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:
- 2Al2О3 = 4Al0 + 3О20
- В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:
- C0 + О20 = C+4O2-2
Электролиз с растворимыми электродами
- Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.
- Например, рассмотрим электролиз раствора сульфата меди (II) с медными электродами.
- На катоде разряжаются ионы меди из раствора:
- Катод (–): Cu2+ + 2ē → Cu0
- На аноде окисляются частицы меди из электрода:
- Анод (+): Cu – 2ē → Cu2+
Источник: https://chemege.ru/electrolysis/