Расчет калорифера: правила расчета мощности водяного и электрического агрегатов

Расчет калорифера: правила расчета мощности водяного и электрического агрегатов

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Подбор мощности невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Определение

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные — энергия передаётся через трубы с горячей водой, паром.
  2. Электрические — тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Электрический калорифер

Расчет калорифера: правила расчета мощности водяного и электрического агрегатов

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата — инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Расчет калорифера: правила расчета мощности водяного и электрического агрегатовОснова водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода — снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику),  насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Расчет калорифера: правила расчета мощности водяного и электрического агрегатовПроцесс нагрева воздуха в виде графика

Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

  • Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
  • Температуры приточки. Берётся минимальное значение для зимнего периода.
  • Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
  • Максимальной температуре, до которой может нагреться тепловой носитель.

Правила вычислений

  • Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый — площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.
  • Площадь вычисляется по формуле:
  • Aф = Lp / 3600×(ϑρ), где
  • L – максимальное значение приточки для поддержки параметров вытяжки, м3/ч;
    Р – нормативная плотность воздуха, кг/м3;
    Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.
  • Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.

Расчет калорифера: правила расчета мощности водяного и электрического агрегатовТаблица подбора по площади сечения
Если результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.

  1. Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:
  2. ϑρ = Lρ / 3600×Аф.факт
  3. На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:
  4. Q = 0.278×Gc× (tп – tн), где
  5. Q – объём тепловой энергии, Вт;
    G – расчётный показатель расхода воздуха, кг/ч;
    с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С;
    tп – температура приточки, °С;
  6. tн – температура воздуха на входе.

Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.

  • Далее вычисляются затраты горячей воды на отдачу тепла холодному:
  • Gw = Q / cw×(tг – t0), где
  • cw – тепловая ёмкость воды, кДж/кг °С;
    tг – температура теплоносителя (воды),0С;
    t0 – расчётная температура воды в обратном трубопроводе,0С.

Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.

  1. Зная Gw, можно вычислить скорость движения воды по трубам:
  2. w = Gw / 3600×ρw×Aф, где
  3. Aф – размер сечения теплообменника, м²;
    ρw – плотность воды при средней температуре теплового носителя, 0С.
  4. Средняя температура:
  5. (tг + t0) / 2

Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.

  • Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:
  • Qзд=q×V× (tп-tн), где
  • q – тепловая характеристика объекта, Вт/(м3ּоС);
    V – объём объекта по внешней стороне ограждающих конструкций, м3;
    (tп-tн) – разность температуры основных помещений, оС.

Расчёт поверхности нагрева

Основная формула площади нагревательной поверхности канального устройства:

Amp = 1.2Q / K× (tср.т – tср.в), где

К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С);
tср.т – средний показатель температуры теплового носителя, 0С;
tср.в – средний показатель температуры приточки, 0С;
число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.

Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.

На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:

Qфакт = К× (tср.т – tср.в)×Nфакт×Ak

Особенность методики для паровых нагревателей

  1. Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:
  2. G = Q / r, где
  3. r – тепловая энергия, получаемая в процессе конденсации пара.

Обвязка

Калорифер в системе вентилирования обвязывается двумя способами:

  1. Двухходовыми вентилями.
  2. Трёхходовыми вентилями.

Более подробно о специфике в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Подбор электрического калорифера

Для установки электрокалорифера не требуется специальный расчёт расхода тепла на работу вентиляции, но необходимо знать два параметра:

  1. Расход воздуха.
  2. Температуру на выходе из системы прогрева.

Производители указывают их в техническом паспорте на устройство.

Но здесь важна одна деталь: объём приточного воздуха всегда должен быть на уровне, указанном производителем устройства. Несоблюдения правила эксплуатации приведёт к поломке прибора.

Система рекуперации

Прямой нагрев воздуха за счёт только энергии нагревательных элементов – это не самый экономичный и практичный вариант устройства отопления вентсистемы. Система рекуперации за счёт замкнутого цикла работы значительно снижает теплопотери. Её работа основана на теплоизбытках, а точнее — энергии отработанных воздушных масс.

Общая схема устройства выглядит так: приточка и вытяжка проходят через один блок, и тепловыделения от исходящих воздушных потоков частично передаются входящим. За счёт использования теплопритоков снижается нагрузка на остальные системы отопления.

Монтаж системы отопления с рекуперацией стоит дороже, чем аналогичный, но без неё. Затраты быстро окупаются в регионах, где отопление подвергается значительной тепловой нагрузке ввиду продолжительной зимы.

Подведем итоги

За помощью в подборе и расчёте канального нагревателя лучше обратиться в специализированную организацию.

Расчет калорифера: правила расчета мощности водяного и электрического агрегатовПример

Компания «Мега.ру» оказываете комплексные услуги в сфере проектирования вентиляции и других инженерных систем. Грамотные инженеры ответят на любые вопросы по телефонам, указанным на странице «Контакты». Компания работает в Москве и соседних регионах, так же практикуется удалённое выполнение заказов на всей территории РФ.

Расчет калорифера: онлайн-калькулятор расчета мощности и расхода теплоносителя

  • При конструировании системы воздушного отопления используются уже готовые калориферные установки.
  • Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.
  • Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.
  • С помощью него вы сможете рассчитать:
Читайте также:  Как выполняется стыковая сварка полиэтиленовых труб: инструкция по проведению работ
[contents]
  1. Тепловую мощность калорифера кВт.

    В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.

  2. Температуру воздуха на выходе.

    В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.

  3. Расход теплоносителя.

    Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.

Расчет мощности калорифера Расчет расхода теплоносителя

Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.

Расчет производительности для нагрева воздуха определенного объема

  1. Расчет калорифера: правила расчета мощности водяного и электрического агрегатов
  2. Определяем массовый расход нагреваемого воздуха
  3. G (кг/ч) = L х р
  4. где:

L — объемное количество нагреваемого воздуха, м.куб/час p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

  • Определяем расход теплоты для нагревания воздуха
  • Q (Вт) = G х c х (t кон — t нач)
  • где:
  • G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы) t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

где:

G — массовый расход воздуха, кг/час v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Вычисление значений массовой скорости

  1. Находим действительную массовую скорость для калориферной установки
  2.   V(кг/м.кв•с) = G / f
  3. где:
  4. G — массовый расход воздуха, кг/час f — площадь действительного фронтального сечения, берущегося в расчет, м.кв

Расчет расхода теплоносителя в калориферной установке

  • Рассчитываем расход теплоносителя
  • Gw (кг/сек) = Q / ((cw х (t вх — t вых))
  • где:
  • Q — расход тепла для нагрева воздуха, Вт cw — удельная теплоемкость воды Дж/(кг•K) t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

где:

Gw — расход теплоносителя, кг/сек pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

Определение коэффициента теплопередачи

  1. Коэффициент теплотехнической эффективности рассчитывается по формуле
  2. Квт/(м.куб х С) = А х Vn х Wm
  3. где:
  4. V – действительная массовая скорость кг/м.кв х с W – скорость движения воды в трубах м/сек A

Расчет тепловой производительности калориферной установки

  • Подсчет фактической тепловой мощности:
  • q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))
  • или, если подсчитан температурный напор, то:
  • q (Вт) = K х F х средний температурный напор
  • где:

K — коэффициент теплоотдачи, Вт/(м.

кв•°C) F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.

кв t вх — температура воды на входе в теплообменник, °С t вых — температура воды на выходе из теплообменника, °С t нач — температура воздуха на входе в теплообменник, °С t кон — температура нагретого воздуха на выходе из теплообменника, °С

Определение запаса устройства по тепловой мощности

  1. Определяем запас тепловой производительности:
  2. ((qQ) / Q) х 100
  3. где:
  4. q — фактическая тепловая мощность подобранных калориферов, Вт Q — расчетная тепловая мощность, Вт

Расчет аэродинамического сопротивления

  • Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:
  • ΔРа (Па)=В х Vr
  • где:
  • v — действительная массовая скорость воздуха, кг/м.кв•с B, r — значение модуля и степеней из таблицы

Помогла вам статья произвести расчет калорифера?Помогла, мне все понятноНе помогла, нужно объяснить более подробно

Определение гидравлического сопротивления теплоносителя

  1. Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:
  2. ΔPw(кПа)= С х W2
  3. где:
  4. С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице) W — скорость движения воды в трубках воздухонагревателя, м/сек.

Расчет калорифера: правила расчета мощности водяного и электрического агрегатов

Калориферы имеют высокую производительность, поэтому с их помощью обогреть даже очень большие помещения можно за довольно короткое время. В продажу поступает много моделей этих приборов, работающих на основе разных теплоносителей.

Чтобы выбрать оптимальный вариант, нужен расчет калорифера, выполнить который можно как вручную, так и воспользовавшись онлайн-калькулятором. С вопросом расчетов мы поможем вам разобраться – в этой статье приведем пример вычислений, которые понадобятся при выборе подходящего прибора для нагрева воздуха.

А также рассмотрим особенности конструкции различных видов калориферов, преимущества и недостатки системы отопления с использованием таких приборов.

Плюсы и минусы отопления с калорифером

Система обогрева дома, основывающаяся на подаче прогретого до установленной температуры воздуха непосредственно в дом, представляет особый интерес для владельцев собственного жилья.

Такая конструкция отопительной системы состоит из следующих важных узлов:

  • калорифера, выступающего в роли теплогенератора, подогревающего воздух;
  • каналов (воздуховодов), по которым поступают нагретые воздушные массы в дом;
  • вентилятор, направляющий хорошо прогретый воздух по всему объему помещения.

Преимуществ у системы такого типа много. К ним относится и высокий КПД, и отсутствие вспомогательных элементов для теплообмена в виде радиаторов, труб, и возможность объединить ее с климатической системой, и малая инерционность, в результате чего прогрев больших объемов происходит очень быстро.

Для многих домовладельцев недостатком является то, что монтаж системы возможен только одновременно со строительством самого дома и затем дальнейшая модернизация ее невозможна.

Минусом является и такой нюанс, как обязательное наличие резервного питания и потребность в регулярном техническом обслуживании.

Калорифер прост в монтаже и эксплуатации, доступен по цене, но главное, он является эффективным прибором для обогрева помещения. На фото водяной калорифер, вмонтированный в систему

У нас на сайте есть более подробные материалы по устройству воздушного отопления в доме и коттедже. Рекомендуем вам ознакомиться с ними:

Классификация калориферов

Калориферы включают в конструкцию системы отопления для нагрева воздуха. Существуют следующие группы этих приборов по виду используемого теплоносителя: водяные, электрические, паровые, огневые.

Электрические приборы имеет смысл использовать для помещений площадью не более 100 м². Для зданий с большими площадями более рациональным выбором будут калориферы водяные, которые функционируют только при наличии источника тепла.

Наиболее популярны паровые и водяные калориферы. Как первые, так и вторые по форме поверхности делятся на 2 подвида: ребристые и гладкотрубные. Ребристые калориферы по геометрии ребер бывают пластинчатыми и спирально-навивными.

Производительность калориферов, работающих на таком теплоносителе как пар, регулируют при помощи специальных клапанов, установленных на входной трубе

По конструкционному исполнению эти приборы могут быть одноходовыми, когда теплоноситель в них совершает движение по трубкам, придерживаясь постоянного направления и многоходовыми, в крышках которых имеются перегородки, вследствие чего направление движение теплоносителя постоянно меняется.

В продажу поступают 4 модели калориферов водяных и паровых, отличающиеся площадью поверхности нагрева:

  • СМ — самая малая с одним рядом труб;
  • М — малая с двумя рядами труб;
  • С — средняя с трубами в 3 ряда;
  • Б — большая, имеющая 4 ряда труб.

Водяные калориферы в процессе эксплуатации выдерживают большие температурные колебания — 70-110⁰. Для хорошей работы калорифера этого типа вода, циркулирующая в системе должна быть нагретой максимум до 180⁰. В теплое время года калорифер может выполнять роль вентилятора.

Конструкция калориферов разных видов

Отопительный водяной калорифер состоит из корпуса, выполненного из металла, размещенного в нем теплообменника в виде ряда трубок и вентилятора. На торце агрегата имеются входные патрубки, через которые его подключают к котлу или централизованной системе отопления.

Как правило, вентилятор находится в тыльной части прибора. Его задача — прогонять воздух через теплообменник.

После нагрева, через решетку, находящуюся на фасадной части калорифера, воздух обратно поступает в комнату.

Чаще всего корпус изготавливают в форме прямоугольника, но есть модели, предназначенные для вентиляционных каналов круглого сечения. На подводящей магистрали устанавливают двух- или 3-ходовые вентили для регулировки мощности агрегата.

Вентилятор обдувает трубки, расположенные в корпусе калорифера. По трубкам движется нагретая вода из системы отопления, а вентилятор распределяет равномерно теплый воздух по комнате

Различаются калориферы и по способу монтажа — они бывают потолочными и настенными. Модели первого типа размещают за фальшпотолком, за его пределы выглядывает только решетка. Настенные приборы более популярны.

Вид #1 – калориферы гладкотрубные

Гладкотрубную конструкцию составляют нагревательные элементы в виде полых тонких трубок диаметром от 20 до 32 мм, расположенные на расстоянии 0,5 см по отношению друг к другу. По ним циркулирует теплоноситель. Воздух, омывая нагретые поверхности трубок, нагревается благодаря конвективному обмену теплом.

Трубки в воздухонагревателе располагают в шахматном или коридорном порядке. Их концы вварены в коллекторы — верхний и нижний. Теплоноситель поступает в распределительную коробку через входной патрубок, затем, пройдя по трубкам и нагрев их, выходит через выходной патрубок в виде конденсата или охлажденной воды.

Более стабильную передачу тепла обеспечивают приборы с шахматным расположением трубок, но сопротивляемость воздушным потокам здесь выше. Нужно обязательно выполнять расчет мощности агрегата, чтобы знать реальные возможности устройства.

К воздуху предъявляют определенные требования — не должно быть волокон, взвешенных частиц, липких субстанций. Допустимая запыленность — меньше чем 0,5 мг/мᶾ. Температура на входе —минимум 20⁰.

Одноходовой и 3-ходовой калориферы. 1 – входной патрубок, через который поступает теплоноситель, 2 – распредкоробка, 3 – трубка, 4 – выходной патрубок, 5 – перегородка

Теплотехнические характеристики гладкотрубных калориферов не очень высокие. Их применение целесообразно, когда не требуется значительного расхода воздуха и его нагрева до высокой температуры.

Вид #2 – ребристые воздухонагреватели

Трубы ребристых приборов обладают оребренной поверхностью, следовательно, теплоотдача от них больше. При меньшем количестве труб теплотехнические характеристики у них выше, чем у гладкотрубных воздухонагревателей.

В состав пластинчатых калориферов входят трубки с насаженными на них пластинами — прямоугольными или круглыми.

Первый вид пластин насаживают на группу труб. Теплоноситель проходит в распределительную коробку прибора через штуцер, прогревает воздух, проходящий со значительной скоростью через каналы небольшого диаметра, а после этого из сборной коробки выходит через штуцер.

Калориферы этого вида компактны, удобны в обслуживании и монтаже.

Одноходовые пластинчатые приборы обозначают: КФБ, КФС, КВБ, СТД3009В, КЗПП, К4ПП, а многоходовые — КВБ, К4ВП, КЗВП, КВС, КМС, СТДЗОЮГ, КМБ. Средняя модель имеет обозначение КФС, а большая — КФБ.

На трубки этих калориферов навивают стальную гофрированную ленту шириной 1 см и толщиной 0,4 мм. Теплоносителем для них может быть как пар, так и вода.

Водяные калориферы нельзя подключать металлопластиковыми или полимерными трубами т.к. они не рассчитаны на высокую температуру теплоносителя.

Нужны стальные трубы и лучше оцинкованные, чтобы исключить коррозию

Первая оснащена тремя рядами трубок, а вторая четырьмя. Пластинки средней модели имеют толщину 0,5 мм и размеры 11,7х 13,6 см.

Пластины большой модели такой же толщины и ширины отличаются большей длиной — 17,5 см.

Пластины находятся на расстоянии друг от друга 0,5 см и имеют зигзагообразное расположение, тогда как у моделей среднего вида пластины расположены по коридорному принципу.

Воздухонагреватели с маркировкой СТД имеют 5 номеров (5, 7, 8, 9, 14). В калориферах СТД4009В теплоносителем является пар, а в СТД3010Г – вода. Монтаж первых выполняют с вертикальной ориентацией трубок, вторых — с горизонтальной.

Вид #3 – биметаллические калориферы с оребрением

В системах отопления с подогревом воздуха часто применяют модели биметаллических калориферов КП3-СК, КП4-СК, КСк – 3 и 4 с особым видом оребрения — спирально-накатным. Теплоносителем для калориферов КП3-СК, КП4-СК является горячая вода с наибольшим давлением 1,2 МПа и максимальной температурой 180⁰.

Для работы двух других воздухонагревателей необходим пар с таким же рабочим давлением, как и для первых, но с несколько большей температурой — 190⁰. Производители обязательно проводят приемо-сдаточные испытания. Тестируют приборы и на герметичность.

Теплообменник калорифера КСК состоит из трубок, выполненных из стали и имеющих алюминиевые ребра.

Соединяют их трубные решетки

Существует 2 линейки биметаллических калориферов — КСК3, КПЗ, имеющие 3 ряда трубок, относятся к средним, а КСК4, КП4 с 4 рядами трубок — к большим моделям.

Составляющими этих приборов являются биметаллические теплообменные элементы, боковые щитки, решетки из трубок, крышки с перегородками.

Теплообменный элемент представляет собой 2 трубки — внутренней диаметром 1,6 см, изготовленной из стали и насаженной на нее алюминиевой наружной с оребрением. Поперечный интервал между теплопередающими трубками 4,15 см, а продольный — 3,6 см.

Правила расчетов и подбора подходящего агрегата

В проектировании системы обогрева с одним или группой калориферов, а также в выполнении расчетов следует соблюдать ряд правил. Рассмотрим их детальнее в фотоподборке ниже.

Расчет водяного калорифера

Для расчета мощности водяного или парового калорифера нужны следующие исходные параметры:

  1. Производительность системы или другими словами — количество воздуха, перегоняемого за час. Единица измерения объемного расхода — мᶾ/ч., массового кг/ч. Условное обозначение — L.
  2. Исходная или наружная температура — tул.
  3. Конечная температура воздуха — tкон.
  4. Плотность и теплоемкость воздуха при определенной температуре — данные берут из таблиц.

Сначала вычисляют площадь сечения по фронту воздухонагревательного устройства. Узнав эту величину, получают предварительные размеры агрегата с запасом.

  • Для расчета используют формулу:
  • Аф = Lρ / 3600 (ϑρ),
  • Где L — объемный расход воздуха или производительность в м³/ч, ρ — плотность воздуха снаружи измеряемая в кг/м³ ϑρ – массовая скорость воздуха в рассчитываемом сечении, измеряется в кг/(см²).

Получив этот параметр, для дальнейших вычислений берут типовой размер калорифера, ближайший по размерам. При большом итоговом значении площади, устанавливают параллельно несколько одинаковых агрегатов, площадь которых в сумме равна полученному значению.

Калориферами называют не только устройства для теплообмена, но и воздухоохладители, работающие на основе холодной воды, которые пользуются намного меньшей популярностью

Для определения необходимой мощности для нагрева какого-то конкретного объема воздуха нужно узнать общий расход подогреваемого воздуха в кг за 1 час по формуле:

G = L х р,

Где р — плотность воздуха в условиях средней температуры. Ее определяют, суммируя температуры на входе и выходе из агрегата, затем делят на 2. Показатели плотности берут из таблицы.

Из этой таблицы можно взять данные по плотности и удельной теплоемкости воздуха при определенной температуре для расчета мощности прибора

Теперь можно вычислить расход тепла для прогрева воздуха для чего применяют следующую формулу:

Q (Вт) = G х c х (t кон. – t нач.),

Где G – массовый расход воздуха в кг/час. Учитывают при расчете и удельную теплоемкость воздуха измеряемую в Дж/(кг х K). Зависит она от температуры входящего воздуха, а ее значения есть в таблице выше. Температура на входе в прибор и на выходе из него обозначается t нач. и t кон. соответственно.

Допустим, надо подобрать калорифер производительностью 10 000 мᶾ/час, чтобы он нагревал воздух до 20⁰ при температуре снаружи -30⁰. Теплоносителем является вода, имеющая температуру на входе в агрегат 95⁰ и 50⁰ на выходе.

Массовый расход воздушной массы: G = 10 000 мᶾ/ч. х 1,318 кг/мᶾ = 13 180 кг/ч.

Значение плотности: ρ = (-30 + 20) = -10, при делении этого результата пополам получили -5. Из таблицы выбрали, соответствующую средней температуре, плотность.

Подставив полученный результат в формулу, получают расход тепла: Q = 13 180 /3600 х 1013 х 20 – (-30) = 185 435 Вт. Здесь 1013 — это удельная теплоемкость, выбранная из таблицы при температуре – 30⁰ в Дж/(кг х K). К расчетной величине мощности калорифера добавляют от 10 до 15% запаса.

Причина в том, что табличные параметры часто отличаются от реальных в сторону уменьшения, а тепловая производительность агрегата, из-за засорения трубок, снижается со временем. Превышение величины запаса нежелательно.

При значительном увеличении поверхности нагрева может произойти переохлаждение, и даже размораживание в большие морозы.

В паровой калорифер теплоноситель подводят сверху, а воду, получившуюся в результате конденсации отработанного пара, отводят снизу.

На фото — схема обвязки парового калорифера

  1. Мощность паровых калориферов рассчитывают таким же способом, как и водяных.

    Отличается только формула расчета теплоносителя:

  2. G = Q / r,
  3. Где r — удельная теплота, которая выделяется во время конденсации пара, измеряемая в кДж/кг.

Расчет электрического калорифера

Производители в каталогах электрических калориферов часто указывают установленную мощность и расход воздуха, что значительно упрощает выбор. Главное, чтобы параметры не были меньшими, чем указанные в паспорте иначе он быстро выйдет со строя.

В конструкцию калорифера входят несколько специальных электрических нагревательных элементов, площадь которых увеличена за счет напрессовки на них оребрения.

Мощность приборов может быть очень большой, иногда это сотни киловатт. До 3,5 кВт калорифер может питаться от розетки 220 В, а при напряжении выше этого необходимо подключение отельным кабелем прямо к щитку. Если есть необходимость в использовании калорифера мощностью выше 7 кВт, потребуется питание 380 В.

Эти приборы имеют небольшие габариты и вес, они полностью автономны, для них необязательно присутствие централизованного горячего водоснабжения или пара.

Существенный минус — низкая мощность недостаточная для применения их на больших площадях. Второй недостаток — большое потребление электроэнергии.

Из расчета калорифера следует, что результатом использования прибора является ощутимая экономия энергетических ресурсов.

Иногда этот агрегат совмещают с рекуператором и тогда забор воздуха происходит не снаружи, а с помещения

  • Чтобы узнать какой ток потребляет калорифер можно воспользоваться формулой:
  • I = P /U,
  • Где P — мощность, U — напряжение питания.

При однофазном подключении калорифера U принимают равным 220 В. При 3-фазном — 660 В.

Температуру, до которой калорифер определенной мощности нагревает воздушную массу, определяют по формуле:

T =2.98 x P/ L,

Где L  – производительность системы. Оптимальные значения мощности калорифера для дома от 1 до 5 кВт, а для офисов — от 5 до 50 кВт.

Выводы и полезное видео по теме

  1. Какую плотность воздуха брать при расчете, рассказано в этом видео:
  2. Видео о том, как работает калорифер в системе отопления:
  3. Выбирая определенный вид калорифера, следует исходить из соображений целесообразности и эксплуатационных характеристик дома.

Для небольших площадей удачным приобретением будет электрический калорифер, а для отопления большого дома лучше подобрать другой вариант. В любом случая не обойтись без предварительного расчета.

Хорошо ориентируетесь в вопросе выбора и расчета калорифера? Возможно хотите поделиться полезными рекомендациями по выбору воздухонагревателя или указать на ошибку или неточность в расчетах в рассмотренном выше материале? Оставляйте свой комментарий под этой статьей – ваше мнение может быть полезным людям, которые выбирают подходящий калорифер для своего дома.

Расчет мощности калорифера

Расчет мощности калорифера

Оборудование для воздушного отопления помещений нуждается в правильном подборе. Соответствие мощности и производительности приборов параметрам здания, климатическим условиям или потребностям людей — самые важные аспекты эксплуатации воздухонагревателей.

Если установленный прибор не соответствует потребностям помещения и не справляется со своими функциями, то появится ощущение дискомфорта, снизится работоспособность персонала, ухудшатся производственные условия, что может отрицательным образом сказаться на качестве выпускаемой продукции, оказываемых услуг или иных сфер деятельности человека. Поэтому для качественного и эффективного обогрева помещений необходим тщательный расчет воздухонагревателей, способный определить оптимальные характеристики того или иного типа нагревателя.

Важно! Необходимо сразу же заметить, что выполнение такого расчета — сложная задача, требующая немалого опыта и знаний. Для неподготовленного человека такая задача, скорее всего, окажется непосильной и потребует обращения к специалистам. Если уверенности в своих силах нет, то лучше не тратить время и сразу же заказать расчет в специализированной организации, где работают грамотные специалисты.

Выбор типа прибора

Прежде, чем приступить к выбору типа прибора, надо выяснить, какие вообще существуют воздухонагреватели. Они могут быть:

  • электрические
  • водяные
  • газовые

Выбор того или иного типа калорифера производится по самому доступному и экономичному типу ресурса. Так, электрические приборы для обогрева помещений используются редко, только в случае полного отсутствия других вариантов.

Причина этого — дороговизна электроэнергии, высокие расходы на потребление нагревателями.

С другой стороны, электронагреватели весьма удобны, так как не имеют никакого теплоносителя и могут устанавливаться практически в любом месте.

Газовые калориферы

Газовые калориферы имеют высокий КПД, близкий к 100%. Они работают на сжиженном газе (обычно это пропан-бутан) и используются как мобильные источники нагрева на строительных площадках, производственных участках и т.п.

Для полноценного стационарного отопления они практически не используются, так как расход газа довольно высок, требуется доставка и хранение баллонов, для чего не всегда имеются условия.

Кроме того, работа с газовыми приборами не всегда допустима в производственных помещениях.

Водяные калориферы

Водяные калориферы являются наиболее востребованными и распространенными обогревательными приборами. Они безопасны, эффективны, могут использовать теплоноситель из системы ЦО или из собственной котельной, имеющейся на предприятии.

Приборы удобны в эксплуатации, они неприхотливы, не требуют трудоемкого ухода и обслуживания, не создают проблем с безопасностью в производстве. Единственный их недостаток — потребность в горячем теплоносителе, без которого система не имеет смысла.

Поэтому для обустройства воздушного отопления на водяном питании надо обеспечить бесперебойную подачу горячей воды.

Кроме водяных, часто используются паровые калориферы, которые практически аналогичны водяным приборам, поэтому рассматривать их отдельно нецелесообразно.

Расчет калорифера

  • производится в несколько этапов:
  • Определяется тепловая мощность калорифера. Это производится по следующей методике:
  • G = L × p
  • Где G — масса воздуха, проходящего через калорифер, кг/ч
  • L — объем проходящей через нагреватель среды м3
  • P — плотность воздуха при усредненном температурном значении (используется разница между внутренней и наружной температурами, разделенная на 2)

Определяется количество теплоты для нагрева этого воздуха:

Q = G × c × (t кон — t нач)

  • Q — количество тепла (тепловой энергии)
  • G — масса воздуха
  • с — удельная теплоемкость воздуха (табличное значение, имеется в СНиП)
  • (t кон — t нач) — разница между конечной и начальной температурами воздуха (на входе и выходе из прибора)

После этого определяется фронтальное сечение калорифера:

F=G/V

  • Где F — фронтальное сечение
  • G — масса воздуха
  • V — массовая скорость потока. Табличное значение, для оребренных трубок имеет среднюю величину в пределах 3-5, при максимальном значении 7-8 кг/м2/сек

Полученное значение используется для подбора подходящего по размеру прибора. Выбор производится по каталогам оборудования, в которых указываются габаритные размеры и иные параметры оборудования.

Определение расхода теплоносителя

Помимо выбора модели калорифера и определения потребности в определенном количестве воздуха в расчет должно входить определение расхода теплоносителя. Это даст возможность обеспечить прибор необходимым количеством горячей воды, перенастроить работу котельной (если понадобится) или подключить иные резервы или возможности. Расчет количества теплоносителя производится по формуле:

Gw = Q/ cw × (t кон — t нач)

  • Где Gw — расход носителя (кг/сек)
  • Q — расход тепла, необходимого для нагрева проходящего воздуха
  • cw — удельная теплоемкость носителя (изменяется в зависимости от температуры, от 0° до 150° меняется в пределах от 4,2 до 4,3 кДж/кг×К)

Важно! Расчет расхода теплоносителя помогает исключить аварийные ситуации в зимние холода, когда возникает опасность разморозки системы и остановки отопления помещений.

Альтернативные варианты производства расчетов

Приведенные методики расчетов достаточно сложны и на практике малопригодны, так как всегда возникает множество дополнительных вопросов и необходимость отдельного расчета различных участков со своими условиями.

Попытки самостоятельного производства подсчетов неизменно приводят к возникновению ошибок.

Хорошо, если расчетные значения оказываются больше, чем это необходимо в самом деле. Тогда можно просто снизить скорость подачи носителя, или изменить режим обдува. Гораздо хуже, если расчетные данные оказываются недостаточными. Тогда приходится в авральном режиме менять систему обогрева, а это — лишние расходы труда и денежных средств.

Для расчета воздушного отопления можно использовать альтернативные варианты. Например, могут быть применены онлайн-калькуляторы, имеющиеся в сети Интернет в достаточном количестве.

Они просты, производят почти мгновенный расчет мощности или иного параметра калорифера, стоит лишь подставить в окошечко программы собственные данные.

При этом, пользоваться результатами такого расчета можно лишь после проверки на других, подобных калькуляторах и принятия среднего значения. Этот способ поможет избежать возможных ошибок и сделать расчеты более корректными.

Ссылка на основную публикацию
Adblock
detector