Для обеспечения безопасной эксплуатации газовых нагревательных приборов с открытым пламенем в настоящее время, как правило, используются электрические схемы, в которых датчиком температуры служит термопара.
Термопара представляет собой спай двух проволочек из разных проводников (металлов). Благодаря простоте устройства термопара является очень надежным элементов схемы защиты и безотказно работает в газовых приборах многие годы. Внешний вид термопары с проводами для газовой колонки NEVA LUX-5013 показан на снимке ниже.
Термопара появилась в 1821 году благодаря открытию немецкого физика Томаса Зеебека. Он обнаружил явление возникновения ЭДС (электродвижущей силы) в замкнутой цепи при нагреве места контакта двух проводников из разных металлов.
Если термопару поместить в пламя горящего газа, то при сильном ее нагреве вырабатываемой термопарой ЭДС будет достаточно для открытия электромагнитного клапана подачи газа в горелку и запальник.
Если горение газа прекратится, то термопара быстро остынет, в результате ее ЭДС уменьшится, и силы тока станет недостаточно для удержания электромагнитного клапана в открытом состоянии, подача газа в горелку и запальник будет перекрыта.
На фотографии показана типовая электрическая схема защиты газовой колонки. Как видно, она состоит всего из трех включенных последовательно элементов: термопары, электромагнитного клапана и реле тепловой защиты.
При нагреве термопара генерирует ЭДС, которая через реле тепловой защиты подается на соленоид (катушку из медного провода). Катушка создает электромагнитное поле, втягивающее в нее стальной якорь, механически связанный с клапаном подачи газа в горелку.
Реле тепловой защиты обычно устанавливают в верхней части газовой колонки рядом с зонтом, и служит оно для прекращения подачи газа в случае недостаточной тяги в газоотводящем канале. При отказе любого элемента схемы защиты газовой колонки подача газа в горелку и запальник прекращается.
В зависимости от модели газовой колонки применяется ручной или автоматический способ поджига газа в запальнике.
При поджиге фитиля вручную используют спички, электрозажигалки (в старых моделях газовых колонок) или пьезоэлектрический поджиг, приводимый в действие нажатием кнопки.
Кстати, если пьезоэлектрический поджиг перестал работать, то с успехом можно поджечь газ в запальнике с помощью газовой зажигалки или спички.
В газовых колонках с автоматическим поджигом воспламенение газа в горелке происходит без участия человека, достаточно открыть кран горячей воды. Для работы автоматики в колонку устанавливается электронный блок с батарейкой. Это является недостатком, так как в случае выхода батарейки из строя зажечь газ в колонке будет невозможно.
Для того чтобы зажечь газ в запальнике с помощью пьезоэлектрического элемента необходимо поворотом ручки на газовой колонке открыть подачу газа в запальник, привести в действие пьезоэлектрический элемент для создания в разряднике искры и после воспламенении газа в запальнике удерживать эту ручку нажатой около 20 секунд, пока не нагреется термопара.
Это очень неудобно, поэтому многие, и я в их числе, не гасят пламя в запальнике месяцами. В результате термопара всегда подвергается воздействию высокой температуры пламени (на фото термопара расположена слева от запальника), что уменьшает срок ее службы, с чем мне и пришлось столкнуться.
Газовая колонка перестала зажигаться, запальник потух. От искры со свечи газ в запальнике зажигался, но стоило отпустить ручку регулировки подачи газа, несмотря на продолжительность времени удержания ее нажатой, пламя гасло.
Соединение между собой клемм теплового реле не помогло, значит, дело в термопаре или электромагнитном клапане.
Когда снял кожух с газовой колонки и пошевелил центральный провод термопары, то она развалилась, что хорошо видно на снимке выше.
Как снять термопару с газовой колонки
Для того чтобы была возможность оперативно отремонтировать газовую колонку своими руками и всегда быть с теплой водой, с учетом опыта длительной эксплуатации газовых колонок разных моделей, у меня под рукой всегда имеется набор запасных частей. Резиновые прокладки, трубки, тепловое реле и термопара в комплекте. Поэтому за полчаса термопара была заменена новой, и колонка опять стала исправно нагревать воду.
Термопара закреплена слева на общей планке с запальником и свечей с помощью гайки. Прежде чем отвинчивать гайку нужно немного отвинтить левый саморез, удерживающий планку, чтобы он не мешал поворачиваться гаечному ключу.
Далее гаечным рожковым ключом гайка откручивается вращением против часовой стрелки до полного схода с резьбы на корпусе термопары. После этого термопара легко выйдет вниз из планки.
На следующем шаге нужно с помощью рожкового ключа выкрутить винт-контакт из газо-водорегулирующего узла. Винт находится с противоположной стороны ручки регулировки подачи газа.
Останется только снять две клеммы с реле тепловой защиты, и термопара в комплекте с проводами будет снята с газовой колонки.
Установка новой термопары производится в обратном порядке, при этом желательно, чтобы токоведущие провода не касались как внутренних металлических частей газовой колонки, так и кожуха после его установки.
В связи с профессиональной необходимостью мне периодически приходится заниматься изготовлением термопар для приборов поддержания заданной температуры в сушильных шкафах и в оборудовании отжига витых магнитопроводов для трансформаторов при температуре 800°С. Поэтому при изготовлении очередной термопары решил попробовать сваркой восстановить работоспособность сгоревшей термопары от газовой колонки.
Центральный провод термопары был сварен с медным проводом электропроводки и имел длину около 5 см. На фотографии место спайки хорошо видно слева. Такой длины провода хватило бы на несколько ремонтов.
Трубчатый проводник термопары длиной около сантиметра весь выгорел, но осталась его часть с более толстой стенкой.
С центрального проводника было удалено место прежней сварки, и детали термопары были очищены от копоти и нагара с помощью мелкой наждачной бумаги.
Центральный проводник был вставлен в основание термопары с таким расчетом, чтобы его конец выступал на один миллиметр. Сварка производилась на специальной установке, устройство и схему которой я опишу ниже, в течение около четырех секунд при напряжении 80 В и силе тока около 5 А.
Видеозапись процесса сварки термопары я не стал делать из опасения повреждения фотоаппарата от яркой дуги, но сделал через пару секунд после окончания сварки снимок раскаленного графитного порошка.
Спай термопары получился, вопреки моим ожиданиям, отличного качества и красивой формы. Появилась уверенность, что ремонт термопары затеял я не зря.
Для исключения замыкания центрального проводника термопары на ее корпус, в зазор была плотно набита вата из стекловолокна. Хорошо для этих целей подойдет и асбест.
Для уверенности в том, что термопара работает, она была нагрета с помощью паяльника до температуры около 140°С.
Мультиметр зафиксировал ЭДС, вырабатываемую термопарой, величиной 5,95 мВ, что подтвердило исправность термопары. Осталось провести проверку работоспособности термопары в газовой колонке.
Хотя термопара стала на сантиметр короче, но все равно ее длины вполне хватило, чтобы месту спая находится в пламени запальника. Реставрированная термопара безотказно работает в газовой колонке уже несколько месяцев, и, полагаю, проработает намного дольше, чем термопара заводского изготовления, так как место спая стало гораздо массивнее.
Внимание! При повторении и эксплуатации предлагаемой установки для сварки термопар, в связи с отсутствием гальванической развязки контактов для подключения термопары, необходимо соблюдать полярность подключения установки к электропроводке. К термопаре должен быть подключен исключительно нулевой провод. Прикосновение к фазному проводу может привести к поражению электрическим током.
Существует несколько способов сварки термопар: в электрической дуге, в соляном электросварочном аппарате, с помощью ацетиленовой горелки и в графитном или угольном порошке.
Я свариваю термопары для измерения температуры с помощью ЛАТРа и керамической емкости, наполненной порошком из графита.
Технология простая, не требует специального оборудования, опыта и доступна для любого домашнего мастера.
По наследству мне досталась самодельная установка для сварки термопар, представленная на фотографии. Установка представляет собой металлическую коробку, в которой установлен ЛАТР, вольтметр переменного напряжения и керамический стакан для графитного порошка.
Электрическая схема установки представлена выше. Питающее напряжение через электрическую вилку подается с бытовой электропроводки через включатель и предохранитель на ток 5 А на первичную обмотку лабораторного автотрансформатора. Неоновая лампочка HL1 служит для индикации включенного состояния установки. Резистор R1 ограничивает ток через HL1.
На дне керамической чаши, наполненной графитным порошком, для подачи тока имеется медная пластина, на которую через латунный винт подается питающее напряжение с переменного контакта ЛАТРа. Нулевой провод, идущий с сетевой вилки, подключается к общему проводу ЛАТРа и к свариваемой термопаре с помощью зажима типа «крокодил».
Величина тока сварки зависит от величины напряжения. Для этого в установке имеется вольтметр переменного напряжения, обозначенный на схеме буквой V.
Величина напряжения устанавливается вращением ручки ЛАТРа и подбирается экспериментально в зависимости от диаметра свариваемых проводов и лежит в пределах 20-90 В. В схеме нет специальных элементов, ограничивающих величину тока.
Он ограничивается за счет сечения проводов схемы и величины сопротивления графитного порошка.
На фотографии показана лицевая панель установки для сварки термопар с обратной стороны. Как видите, ЛАТР закреплен непосредственно на дне коробки, а все остальные элементы электрической схемы закреплены непосредственно на панели.
Всего просмотров: 13535
Представляю видеоролик, демонстрирующий процесс сварки термопары на установке для сварки термопар. Как видите, сварить термопару на самодельной установке своими руками очень просто.
Для сварки термопары на установке достаточно свить проводники, зажать их крокодилом и плавно прикоснуться к поверхности графита.
Возникнет электрическая дуга, выделяющая большое количество тепловой энергии в одной точке.
Проводники начинают оплавляться, и расплавленные металлы, смешавшись друг с другом, за счет сил поверхностного натяжения в жидкостях образуют аккуратный шарик, как на фотографии.
Время сварки обычно не превышает трех секунд. Горение дуги сопровождается характерным шипящим звуком, с понижающейся во времени частотой. При наличии опыта по звуку можно легко определить момент окончания процесса сварки. В связи с большой массивностью термопары для газовой колонки, на ее сварку понадобилось около пяти секунд.
Вот фотография хромель-алюмелевой термопары из проводов ∅0,5 мм, сварка которой продемонстрирована в видеоролике выше. Как видите, в месте сварки проводов образовался аккуратный спай круглой формы. Такая термопара прослужит долго.
На установке для сварки термопар мне приходится в основном сваривать хромель-копелевые (ТХК, Тип L) и хромель-алюмелевые (ТХА, Тип K) термопары с диаметром проводников 0,2-0,5 мм.
Случалось при ремонте сваривать даже термопару типа К с диаметром проводников 3 мм. Хорошо свариваются между собой медные и алюминиевые провода диаметром до 2,5 мм.
Но при монтаже электропроводки установку применять для сварки соединений из-за ее габаритных размеров сложно.
Для защиты глаз от яркого света при визуальном контроле над процессом сварки очки или защитную маску сварщика использовать неудобно, поэтому я использую нейтральный светофильтр высокой плотности от фотоаппарата.
Как показала практика, с помощью простейшей установки, представляющей собой ЛАТР и керамическую чашу с графитным порошком, можно успешно выполнять ремонт термопар, применяемых в системах автоматики газовых колонок, в домашних условиях своими руками.
Источник: https://YDoma.info/remont-svoimi-rukami/remont-gazovyh-priborov/remont-gazovoy-kolonki-termopara.html
Аксессуары для мультиметров, стр.3109
Page 2
Главная > Измерительные приборы > Мультиметры > Аксессуары
|
Источник: https://www.chipdip.ru/catalog-show/multimeter-accessories?page=3
Щупы для мультиметра своими руками
Всем привет! Хочу поделить способом изготовления надежных щупов. Когда купил мультиметр DT9208A, с ним в комплекте шли щупы, но они сделаны очень некачественно и в скором времени пришли в негодность.
Самое слабое место у данных щупов – это там, где провод заходит в пластиковую трубку. В этом месте нет фиксации провода и если вы случайно потянете кабель, не прикладывая особых усилий, он оторвется. Так и случилось с моими щупами.
Так что такой совет: чтобы кабель не оторвался его нужно зафиксировать. Сделать это можно с помощью обычной изоленты или скотча.
Но если у вас есть возможность, лучше купите качественные фирменные щупы или как я, сделайте своими руками. Итак, нам понадобится:
Советская штепсельная вилка. Можно использовать и другую, но лучше производства СССР, так как у советских вилок латунные штыри. Найти такую вилку не трудно, в крайнем случае можно купить на рынке. Можно использовать вот такой вариант. Главное, обратите внимание на металл, из которого выполнены штыри.
Когда нашли такую вилку, из неё надо извлечь латунные штыри. Сделать это очень просто: для этого нужно открутить болты с верхней части вилки, и она распадется на пополам. Далее нужно открутить сами штыри. Вот так выглядят штыри с моей вилки:
Как уже говорил, основу мы будем брать из старых щупов, которые шли в комплекте. А именно нам понадобится пластиковая трубка, в которую мы и вставим штыри от вилки. Для этого нам надо удалить старые штырьки щупов плоскогубцами. Вот что должно получится в итоге:
Итак, мы имеем штыри от вилки и пластиковые трубки от старых щупов. Теперь нам нужно подготовить штыри для ставки в трубки. Как мы могли заметить штыри не ровные, а буквой «Г», поэтому нужно отрезать ножовкой лишнее.
А точнее ту часть, которая загнута. Кроме того, нам нужно заточить штыри. Это можно сделать с помощью напильника или на точильном станке. Обрабатываем из таким образом, чтобы они туго входили с пластиковую трубку.
Далее нам нужно определится, какой провод мы будем использовать для щупов. Я пошел на радиорынок и выбрал подходящий. Лучше брать провод с толстой медной жилой. У нас на рынке из таких проводов были только двойные акустические провода.
Если вы также купили двойной провод, его нужно аккуратно разделить на два с помощью лезвия или ножа. Также при покупке провода, следует выбрать правильную длину. Я купил провод длиной 1.
5 метров, хотя у родных щупов провод был меньше метра. Не знаю, как вам, а мне удобней, когда провод длинный. Так что выбирайте длину провода из своих соображений, но не короче 0.
7 метра, так как будет очень неудобно пользоваться такими щупами.
Когда пойдете покупать провод, не забудьте купить штекеры для подключения щупов. При покупке штекеров возьмите с собой мультиметр, чтобы проверить походят ли штекер к вашему прибору или нет. Но на большинство мультиметров подойдут штекеры типа «банан». Я купил вот такие:
Теперь у нас есть все необходимое для изготовления щупов. Первым делом следует разделить и зачистить провод. Затем залудить все места пайки, т.е. концы проводов и концы штырей, где будет припаян провод. Штекеры лудить не нужно, так как в них провод вставляется и зажимается болтом.
Когда все подготовлено к сборке, проденьте провод в пластиковую трубку и припаяйте к нему латунный штырек. Затем нужно оттянуть провод назад, чтобы штырь был вставлен в трубку. Теперь нужно зафиксировать место входа провода в трубку и место входа штыря в трубку. Я сделал это с помощью термоусадки.
Красный щуп получился немного кривоватый, потому что провод был припаян не по центру штыря, а сбоку. Но это никак не влияет на работу.
Теперь нам осталось продеть другой конец провода в разъем и зажать провод болтом и щупы готовы к работе.
Вот такие щупы у меня получились:
Сопротивление щупов вышло 0.6 Ом, что довольно неплохо. Сопротивление родных щупов было около 1 Ома, так как провод был тоньше.
Вот такие щупы можно сделать своими руками без особых затрат.
Перед тем ка покупать щупы, подумайте, может вам дешевле будет сделать их своими руками? Но если вы занимаетесь пайкой smd элементов и вам нужны более тонкие концы щупов (как иголки), то вы можете сильнее заточить латунные штыри (вот инструкция для них).
Кончено если у вас есть возможность купить дорогие фирменные щупы, то покупайте их, но я решил сэкономить деньги и купить деталей. Кроме того, у нас на рынке очень высокие цены. Всем удачи! Специально для Радиосхем — Кирилл.
Форум
Обсудить статью Щупы для мультиметра своими руками
Источник: https://radioskot.ru/publ/izmeriteli/shhupy_dlja_multimetra_svoimi_rukami/15-1-0-1356
Самодельные щупы с тонкими наконечниками и крокодилами
Измерения мультиметром происходит посредством щупов. Не все щупы для мультиметра в комплектах обладают хорошим качеством, потому будет предпочтительнее сделать их самостоятельно. Это не занимает много времени, зато потом дает возможность не отвлекаться на их замену.
Также есть возможность оснастить щупы крокодилами, которые будут освобождать руки на время проведения замеров. Иногда полезно иметь одновременно измерительные разборные тонкие щупы и модель с крокодиловыми зажимами, каждые из них в определенных ситуациях будут незаменимыми.
Материалы для варианта с крокодилами
Щупами с крокодилами очень удобно пользоваться, если надо зафиксировать проводник для точности измерений мультиметром. Для проведения работ потребуются следующие инструменты и составляющие:
- паяльник;
- олово;
- флюс;
- 2 провода с силиконовой изоляцией 1.5 мм2 разных цветов;
- 2 штекера типа «банан» разных цветов для подсоединения к мультиметру;
- 2 зажима типа «крокодил» разных цветов.
Провода используют многожильные медные, поскольку у меди хорошая проводимость и гибкость. Силиконовые оболочки мягкие, гибкие, не ломаются и не растрескиваются со временем. Можно найти вариант, специально предназначенный для мультиметра черного и красного цвета.
Подсоединение штекеров
Чтобы изготовить самодельные щупы, необходимо соединить провода со штекерами и зажимами. При умении паять и наличии всех необходимых инструментов процедура займет не более получаса.
Цвет штекера, провода и зажима желательно подбирать одинаковый, чтобы один щуп был, например, полностью красным, а второй полностью черный. В этом случае мультиметром будет удобно пользоваться, и легко соблюдать полярность при измерениях.
Для начала следует завести провода в «бананы», через которые и будет происходить их подключение к мультиметру. Соединение со штекером не вызывает особой сложности.
Из «банана» выкручивается болтик, после чего внутрь можно заводить провод, конец которого заранее зачищен. Затем нужно закрутить болтик, тем самым надёжно зафиксировав провод внутри. Такую же операцию проделывают с другим проводом. На этом «бананы» можно считать подсоединёнными.
Подсоединение зажимов
На данном этапе зачищают и лудят свободные концы проводов, которые будут идти к зажимам «крокодил». Далее берётся крокодил для подходящего по цвету провода. С него снимают изоляцию, и выкручивают болтик.
Зажим провода болтами – не самое надёжное решение для щупов мультиметра. Будет лучше припаять его в этом месте, предварительно сделав из олова небольшую площадку для пайки. Так же присоединяется и второй «крокодил».
Теперь можно приступить к припаиванию «крокодила». Для этого внутрь заводится провод, доводя залуженный конец к подготовленной площадке.
Предварительно на провод должна быть надета изоляция «крокодила», чтобы её потом можно было натянуть на соединение.
Берётся припой, и провод запаивается к «крокодилу». Пайка должна быть крепкая, чтобы провод не слетал при малейшем натяжении. Когда провод запаян, нужно зажать его нижними краями корпуса «крокодила», сделать это можно при помощи плоскогубцев.
После этого образуются крепкие зажимы, что даст гарантию длительной исправности самодельного щупа. Далее надевается изоляция на «крокодил». Это нужно для его надежной и безопасной работы, также для эстетичного вида.
Изготовление тонких щупов
Также можно сделать тонкие щупы для мультиметра. Наиболее дешевый и простой вариант – это сделать их из корпуса ручек. Тут все очень схоже, только вместо зажимов понадобятся следующие детали:
- две ручки разного цвета;
- силикон;
- 2 щупа-иглы, размером 5-7 см, чтобы их можно было частично высунуть из нижнего колпачка ручки.
В качестве наконечника покупают либо специальные тонкие щупы для мультиметра dt, либо используют тонкие швейные или медицинские иглы. Лучше все-таки использовать специальные иглы-щупы, приобретя их на радиорынке или в интернет-магазине.
Остальное всё понадобится то же, что и в предыдущем варианте изготовления щупов для мультимтера. Штекеры подсоединяются так же, как было описано выше, а закрепление наконечников будущих щупов имеет несколько особенностей.
Для начала в верхних колпачках ручек делается по одной дырке. Это нужно для захода провода внутрь. Желательно чтобы их диаметр совпадал с диаметром провода. Далее нижнюю часть ручки разбирают и в неё вдевают иглу.
Иглу нужно спаять с проводом, который предварительно вдет в колпачок. Припой не стоит делать слишком толстым, но запаивать нужно надёжно. О процессе пайки также было рассказано выше.
Когда всё готово, в нижнюю часть ручки заливается силикон и пока он не затвердел, игла высовывается по уровню. В течение нескольких часов ее нельзя тревожить.
Можно это сделать таким образом. Сначала высунуть иглы на 4-5 см, после чего одеть колпачок. Таким образом, наконечники для щупов самостоятельно займут нужное положение. Когда силикон застыл, конструкция получается крепкая и удобная.
Проверка
Чтобы проверить устройство на работоспособность, нужно произвести замеры на сопротивление щупов. Для этого нужно подключить мультиметр к сети и установить переключатель на измерение сопротивления.
В случае, когда на мультиметре нет автоподстройки диапазонов, нужно переключить на измерение самого низкого предела.
Вставить выводы щупов в гнёзда прибора, после чего соединить щупы друг с другом. Должна быть отображена цифра на сопротивление 0, или максимально близкая к нулю. Если мультиметр автоматический, то через пару секунд после замыкания прибор сам установит 0.
Если знать последовательность процесс, то вся работа не вызовет сложности. Нужно иметь минимальные навыки пайки, и тогда всё будет сделано быстро, а прибор прослужит не один год.
Источник: https://EvoSnab.ru/instrument/avo/shhupy-dlja-multimetra
Термопара для мультиметров своими руками: разновидности и ремонт крокодилов
Каким прибором измерить силы удара, тяги и вращения
Прибор для измерения силы: динамометр. Измерение сил в системе С И. Принцип действия и история изобретения динамометра. механические (рычажные или пружинные), электрические и гидравлические динамометры….
19 02 2020 17:20:51
Примеры магнитной (диамагнитной) левитации, диамагнетизм
Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….
16 02 2020 15:48:40
Формула активного сопротивления в цепи переменного тока
Сопротивление с активным свойством в цепи переменного тока. Характеристики потерь. Формула активного сопротивления в цепи переменного тока. Треугольник сопротивлений. Особенности реактивного сопротивления….
02 02 2020 12:47:40
Перечень средств относящихся к средствам индивидуальной защиты
Определение средств индивидуальной защиты. Меры по снижению влияния вредных факторов, снижения степени опасности и предотвращения несчастных случаев. Перечень и классификация С И З. Порядок приобретения и выдачи, ответственность за использование….
29 01 2020 9:36:56
Как использовать нагрузочную вилку для проверки аккумулятора
Зачем проверять А К Б. Что проверить перед оценкой состояния аккумулятора. Что такое нагрузочная вилка: особенности применения. Порядок проверки аккумулятора с помощью нагрузочной вилки. Параметры (таблица) для оценки годности батареи….
20 01 2020 16:35:34
Измерение тока прикосновения и напряжения
Что такое напряжение прикосновения и методы его измерения. Приборы предназначенные для измерения тока напряжения. Меры электробезопасности. Электротравмы: местные и общие (общее поражение электрическим током)….
15 01 2020 18:10:56
Виды сетевых кабелей и для чего нужны сетевые провода
Виды сетевого кабеля: от витой пары до оптиволоконных кабелей. Коаксиальный кабель: области и история применения. Витая пара: категории и расшифровки обозначений (маркировок). Оптоволоконные сетевые провода….
12 01 2020 0:26:24
Солнечная батарея: подключение внешних аккумуляторов
Особенности подключения аккумуляторов к солнечным батареям. Как рассчитать основные параметры А К Б для солнечных батарей. Основные виды аккумуляторных батарей для гелиосистем. Гелиосистема с AGM-накопителями….
07 01 2020 3:17:47
Электротехника: основы, понятия, положения и определения
Основные понятия электротехники. Круг вопросов, рассматриваемых в большинстве курсов по электротехнике. Определения электромагнетизма, переменного тока и электрических машин (электродвигатели и генераторы)….
02 01 2020 21:56:19
Выбор аккумулятора для авто: как подобрать правильную АКБ по емкости
Для чего нужна А К Б: функции автоаккумулятора. Проверка автоэлектрики и советы по эксплуатации автомобильных аккумуляторов. Как выбрать автоаккумулятор: практические советы. Свинцово-кислотные автомобильные аккумуляторы: преимущества и недостатки….
28 12 2019 14:46:22
Определение электрического тока
Что называют электрическим током. В каких единицах измеряется сила или величина электрического тока. Что представляет собой электрический ток. Проводники и полупроводники. Законы для электротока. Характеристики электроцепи….
23 12 2019 20:47:33
Электрическое сопротивление человеческого тела: значение в омах
Электрическое сопротивление тела человека. Человек как проводник электрического тока. Значение полного сопротивления тел людей. Место приложения электротока и значение его показателей. Физиологические факторы и показатели окружающей среды….
22 12 2019 21:30:33
Формула для расчета вектора напряженности электрических полей
Как направлен вектор электрического поля. Правила вычерчивания силовых линий. Определение электрической силы с помощью закона Кулона. Вычисление модуля напряженности. Напряженность электрического поля. Закон обратных квадратов. Формула для расчета вектора напряженности электрических полей….
21 12 2019 11:31:40
Как сделать внешнюю антенну для 4G модема Yota своими руками
В каких случаях необходимо усиление сигнала для LTE модемов Yota. Виды внешних антенн для роутеров Yota и преимущества их использования. Самодельная антенна для Yota: из банки из алюминия, антенна Харченко и спутниковая антенна….
17 12 2019 5:30:58
Счетчик электроэнергии старого образца
Счётчики старого и нового образца их отличие. Типы устаревших счётчиков. Для начала нужно разобраться какие, вообще, бывают счётчики….
14 12 2019 22:46:58
Законы последовательного и параллельного соединения проводников
Применение различных типов соединений в электрических цепях в зависимости условий. Преимущество параллельного соединения проводников. Законы последовательной и параллельной цепей. Примеры использования различных видов соединения проводников….
11 12 2019 21:12:19
Основы радиотехники и радиоэлектроники для радиолюбителей
Что нужно знать о радиотехнике и радиоэлектронике начинающему радиолюбителю. Какие нужны инструменты, материалы и измерительные приборы. Паяльник для начинающего радиолюбителя. Техника безопасности. Полезные советы….
08 12 2019 20:33:20
Тепловые действия электротоков: формула
Закон Джоуля- Ленца и переход энергии в теплоту. Формула, отражающая тепловое действие электрического тока. Применение тепловых действий электротоков. Применение теплового свойства электротока в специальных печах для получения определенных веществ….
18 11 2019 16:54:30
Все о магнитных пускателях или контакторах серии ПМЛ
История создания и назначение магнитного пускателя П М Л. Конструкция прибора и расшифровка цифробуквенного обозначения контакторов. Монтаж пускателей: крепление на DIN-рейке или крепление болтами. Подключение пускателя- П М Л….
07 11 2019 3:22:22
Бездоговорное потребление элетроэнергии
Использование безучетной электроэнергии это незаконно, за такое использование энергии существует ответственность и последствия для потребителя….
30 10 2019 0:32:18
Формула расчета частоты вращений
Частота вращения: формула. Синхронные и асинхронные электромашины. Синхронная скорость и скольжение. Расчет и регулировка частоты вращений. Номинальная скорость вращения в двигателях постоянного тока….
27 10 2019 18:58:11
Соединения СИП-кабеля с медными проводами проколом и соединителем
Устройство и характеристики С И П-кабеля. Преимущества С И П-проводов. Марки С И П. Способы соединения разнородных проводов: прокалывающие зажимы, болтовое сочленение и клеммные соединения. Правила соединения С И П-кабеля с медными проводами проколом и соединителем….
17 10 2019 1:58:48
Единица измерения света и формула расчета освещенности помещения
Единицы освещения и формула для расчета освещенности. Человеческий фактор и характер деятельности при расчете измерения света. Приборы для определения уровня освещенности и методика его определения. Способы измерений. Важность величины пульсации….
15 10 2019 5:40:16
Подключение и монтаж трансформатороа тока
Подключить, монтировать трансформатор тока в цепях защиты и измерения. Способы подключения понижающих трансформаторов, а также их параллельная работа….
13 10 2019 17:13:36
Указатели напряжений: однополюсные двухполисные, до 1000в и свыше
Назначение и виды указателей напряжений. Низковольтное и высоковольтное напряжение и приборы для их определения. Высоковольтные устройства и особенности их применения. Порядок работы с указателем высокого напряжения У В Н 10. Указатели напряжения для проверки совпадения фаз….
06 10 2019 18:39:17
Источник: https://flatora.ru/electro/8203.php
Устройство и ремонт мультиметров серии М-830 | Мастер Винтик. Всё своими руками!
Поскольку в мультиметрах используется плотный монтаж, то возможны замыкания элементов, плохие пайки и поломка выводов элементов, особенно расположенных по краям платы. Ремонт неисправного прибора следует начинать с визуального осмотра печатной платы. Наиболее часто встречающиеся заводские дефекты мультиметров М832 приведены в таблице.
Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения частотой 50.60 Гц и амплитудой в несколько вольт. В качестве такого источника переменного напряжения можно взять мультиметр M832, у которого есть режим генерации меандра.
Для проверки дисплея следует положить его на ровную поверхность дисплеем вверх, подсоединить один щуп мультиметра M832 к общему выводу индикатора (нижний ряд, левый вывод), а другой щуп мультиметра прикладывать поочередно к остальным выводам дисплея.
Если удается получить зажигание всех сегментов дисплея, значит, он исправен.
Вышеописанные неисправности могут появиться и в процессе эксплуатации. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок по входу. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки питающего напряжения и работоспособности АЦП: напряжения стабилизации 3 В и отсутствия пробоя между выводами питания и общим выводом АЦП.
В режиме измерения тока при использовании входов V, Q и mA, несмотря на наличие предохранителя, возможны случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды D2 или D3.
Если в мультиметре установлен предохранитель, не соответствующий требованиям инструкции, то в этом случае возможно выгорание сопротивлений R5…R8, причем визуально на сопротивлениях это может никак не проявиться.
В первом случае, когда пробивается только диод, дефект проявляется только в режиме измерения тока: ток через прибор протекает, но дисплей показывает нули.
В случае выгорания резисторов R5 или R6 в режиме измерения напряжения прибор будет завышать показания или показывать перегрузку.
При полном сгорании одного или обоих резисторов прибор не обнуляется в режиме измерения напряжения, но при замыкании входов дисплей устанавливается на нуль.
При сгорании резисторов R7 или R8 на диапазонах измерения тока 20 мА и 200 мА прибор будет показывать перегрузку, а в диапазоне 10 А — только нули.
В режиме измерения сопротивления повреждения происходят, как правило, в диапазонах 200 Ом и 2000 Ом. В этом случае при подаче на вход напряжения могут сгорать резисторы R5, R6, R10, R18, транзистор Q1 и пробиваться конденсатор C6. Если полностью пробит транзистор Q1, то при измерении сопротивления прибор будет показывать нули.
При неполном пробое транзистора мультиметр с разомкнутыми щупами будет показывать сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкается переключателем накоротко и на показания мультиметра не влияет.
При пробое конденсатора C6 мультиметр не будет измерять напряжение в диапазонах 20 В, 200 В и 1000 В или существенно занижать показания в этих диапазонах.
В случае отсутствия индикации на дисплее при наличии питания на АЦП или визуально заметного выгорания большого количества элементов схемы существует большая вероятность повреждения АЦП.
Исправность АЦП проверяется контролем напряжения источника стабилизированного напряжения 3 В. На практике АЦП выгорает только при подаче на вход высокого напряжения, гораздо выше 220 В.
Очень часто при этом в компаунде бескорпусного АЦП появляются трещины, повышается ток потребления микросхемы, что приводит к ее заметному нагреву.
При подаче на вход прибора очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и по печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1.R6.
У дешевых моделей серии DT длинные выводы деталей могут закорачиваться на экран, расположенный на задней крышке прибора, нарушая работу схемы. У Mastech такие дефекты не наблюдаются.
Источник стабилизированного напряжения 3 В в АЦП у дешевых китайских моделей может на практике давать напряжение 2,6.3,4 В, а у некоторых приборов перестает работать уже при напряжении питающей батареи 8,5 В.
В моделях DT используются низкокачественные АЦП, они очень чувствительны к номиналам цепочки интегратора C4 и R14. В мультиметрах фирмы Mastech высококачественные АЦП позволяют использовать элементы близких номиналов.
Часто в мультиметрах DT при разомкнутых щупах в режиме измерения сопротивления прибор очень долго подходит к значению перегрузки («1» на дисплее) или не устанавливается совсем. «Вылечить» некачественную микросхему АЦП можно уменьшив номинал сопротивления R14 с 300 до 100 кОм.
При измерении сопротивлений в верхней части диапазона прибор «заваливает» показания, например, при измерении резистора сопротивлением 19,8 кОм показывает 19,3 кОм. «Лечится» заменой конденсатора C4 на конденсатор величиной 0,22…0,27 мкФ.
Поскольку дешевые китайские фирмы используют низкокачественные бескорпусные АЦП, то нередки случаи обрыва выводов, при этом определить причину неисправности очень трудно и проявляться она может по-разному, в зависимости от оборванного вывода. Например, не горит один из выводов индикатора.
Поскольку в мультиметрах используются дисплеи со статической индикацией, то для определения причины неисправности необходимо проверить напряжение на соответствующем выводе микросхемы АЦП, оно должно быть около 0,5 В относительно общего вывода. Если оно равно нулю, то неисправен АЦП.
Эффективным способом поиска причины неисправности является прозвонка выводов микросхемы аналого-цифрового преобразователя следующим образом. Используется еще один, разумеется, исправный, цифровой мультиметр. Он включается в режим проверки диодов. Черный щуп, как обычно, устанавливается в гнездо COM, а красный в гнездо VQmA.
Красный щуп прибора подсоединяется к выводу 26 (минус питания), а черный поочередно касается каждой ножки микросхемы АЦП.
Поскольку на входах аналого-цифрового преобразователя установлены защитные диоды в обратном включении, то при таком подключении они должны открыться, что будет отражено на дисплее как падение напряжения на открытом диоде.
Реальная величина этого напряжения на дисплее будет несколько больше, т.к. в схеме включены резисторы.
Точно так же проверяются все выводы АЦП при подключении черного щупа к выводу 1 (плюсу питания АЦП) и поочередного касания остальных выводов микросхемы. Показания прибора должны быть аналогичными.
Но если поменять полярность включения при этих проверках на противоположную, то прибор должен показывать всегда обрыв, т.к. входное сопротивление исправной микросхемы очень велико.
Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме.
Если же прибор показывает обрыв при любом подключении исследуемого вывода, то это на девяносто процентов говорит о внутреннем обрыве.
Указанный способ проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.
Бывают неисправности, связанные с некачественными контактами на галетном переключателе, прибор работает только при нажатом галетнике.
Фирмы, производящие дешевые мультиметры, редко покрывают дорожки под галетным переключателем смазкой, отчего они быстро окисляются. Часто дорожки бывают чем-нибудь загрязнены.
Ремонтируется следующим образом: из корпуса вынимается печатная плата, и дорожки переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, прибор починен.
У приборов серии DT бывает иногда так, что переменное напряжение измеряется со знаком минус. Это указывает на неправильную установку D1, обычно из-за неправильной маркировки на корпусе диода.
Случается, что изготовители дешевых мультимет-ров ставят низкокачественные операционные усилители в цепи звукового генератора, и тогда при включении прибора раздается жужжание зуммера.
Этот дефект устраняется подпаиванием электролитического конденсатора номиналом 5 мкФ параллельно цепи питания.
Если при этом не обеспечивается устойчивая работа звукового генератора, то необходимо заменить операционный усилитель на LM358P.
Часто встречается такая неприятность, как вытекание батареи.
Небольшие капли электролита можно протереть спиртом, но если плату залило сильно, то хорошие результаты можно получить, промыв ее горячей водой с хозяйственным мылом.
Сняв индикатор и отпаяв пищалку, с помощью щетки, например зубной, нужно тщательно намылить плату с обеих сторон и промыть под струей воды из-под крана. Повторив мойку 2.3 раза, плату высушивают и устанавливают в корпус.
В большинстве приборов, выпускаемых в последнее время, применяются бескорпусные (DIE chips) АЦП. Кристалл устанавливается непосредственно на печатную плату и заливается смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к.
при выходе АЦП из строя, что встречается достаточно часто, заменить его трудно. Приборы с бескорпусными АЦП иногда бывают чувствительны к яркому свету. Например, при работе рядом с настольной лампой погрешность измерений может возрасти.
Дело в том, что индикатор и плата прибора обладают некоторой прозрачностью, и свет, проникая сквозь них, попадает на кристалл АЦП, вызывая фотоэффект.
Для устранения этого недостатка нужно вынуть плату и, сняв индикатор, заклеить место расположения кристалла АЦП (его хорошо видно сквозь плату) плотной бумагой.
При покупке мультиметров DT следует обратить внимание на качество механики переключателя, следует обязательно прокрутить галетный переключатель мультиметра несколько раз, чтобы убедиться, что переключение происходит четко и без заеданий: дефекты пластмассы не поддаются ремонту.
Сергей Бобин. «Ремонт электронной техники» №1, 2003
Источник: https://www.MasterVintik.ru/ustrojstvo-i-remont-multimetrov-serii-m-830/