Принцип работы и назначение конденсатора в электрической цепи

Конденсатор — это устройство, предназначенное для накопления зарядов. От латинского слова condensare — уплотнять, сгущать, накапливать. Он стал одним из обязательных кирпичиков, из которых строятся электрические схемы.

Принцип работы конденсатора

Конденсатор, видимо, есть самый первый прибор, с помощью которого научились достаточно долго удерживать электрические заряды в одном месте.

Если зарядить какой-нибудь диэлектрик трением, например, ту же классическую расческу, потерев ее шерстью, то заряд на ее поверхности останется на некоторое время.

Однако ни накопить его, ни как-то использовать не удастся: кроме пары-тройки фокусов с притягиванием к расческе всякого мусора, ничего не выйдет. Металл же зарядить трением вообще невозможно.

Все заряды, которые были бы как-то им приняты, на поверхности не удерживаются, а разбегаются сразу по всей массе применяемого металла. Или сбегают с него, благодаря большой площади контакта с воздухом, всегда содержащим влагу, что делает задачу невозможной.

Удалось придумать накопление электричества благодаря свойству притяжения друг к другу зарядов разного знака.

Если два листочка из фольги прижать друг к другу, проложив между ними тонкий слой хорошего диэлектрика, то такой сэндвич можно зарядить, прикоснувшись телами, содержащими заряды разного знака, к разным листочкам фольги.

Заряды разного знака притягиваются друг к другу и обязательно побегут в фольге навстречу друг другу. Они бы и разрядились, не будь между слоями фольги диэлектрика. И заряды только растекутся каждый по своему листу фольги и, притягиваясь друг к другу, будут находиться в ней достаточно долго.

Вот это и называется конденсатор. Чем больше площадь фольги — тем больше емкость.

Чтобы добиться большой площади, фольгу с изолятором сворачивают рулоном — две ленты фольги и две ленты бумаги — и помещают в банку, выводя наружу от каждой ленты по контакту.

Снаружи банка запаивается, чтобы предотвратить поступление влаги внутрь. Вездесущая влага же и является причиной, по которой бумажную ленту пропитывают парафином.

Принцип работы и назначение конденсатора в электрической цепи
Устройство конденсатора

а) устройство, б) внешний вид

1 – фольговые обкладки, 2 – внутренние выводы обкладок, 3 – парафинированная бумага, 4 – металлический корпус, 5 – провод

На рисунке изображено, как устроен простейший фольговый автомобильный конденсатор. У него один контакт выведен от одной обкладки наружу проводом, а другим является металлический корпус, внутри присоединенный ко второй обкладке.

Работа конденсатора в электрической цепи

Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

Зарядка конденсатора

Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.

Принцип работы и назначение конденсатора в электрической цепи
Конденсатор: принцип действия

εc  – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель  

Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.

Принцип работы и назначение конденсатора в электрической цепи
Конденсатор

Разрядка конденсатора

Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.

Принцип работы и назначение конденсатора в электрической цепи
Процессы внутри конденсатора

У ситуации, описанной в этих двух случаях, есть интересные особенности:

  1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
  2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
  3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы.

После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R.

Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

Принцип работы и назначение конденсатора в электрической цепи
Формула

Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах. 

Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.

Принцип работы и назначение конденсатора в электрической цепи
Временная диаграмма разрядки конденсатора через резистор

Uc  – напряжение  на конденсаторе (вольт), U0  – первоначальное напряжение заряженного конденсатора, t – время (сек)

На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки.

Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени.

С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

Принцип работы на переменном напряжении

Так же, как в механике масса обладает свойством инерции, в электричестве заряд в конденсаторе тоже проявляет инерционность.

Действительно, при любых электрических процессах он начинает подзаряжаться (если напряжение на его контактах имеет такую же полярность, как и заряд в нем) или разряжаться (если полярность противоположная).

Это влияет на картину токов в цепи, а на синусоидальном токе проявляется как сдвиг фазы между напряжением и током.

Фактически в цепи переменного тока непрерывно происходит переходный процесс.

Принцип работы и назначение конденсатора в электрической цепи
Конденсатор в цепи переменного тока

Принцип работы и назначение конденсатора в электрической цепи
Процессы в конденсаторе

Переменное напряжение U то подзаряжает, то разряжает конденсатор, в результате этого в нем течет ток I, сдвинутый по времени на 90° от периода колебаний напряжения.

Формула

Считается, что конденсатор пропускает переменный ток, причем введен параметр «кажущееся сопротивление конденсатора». Он зависит от емкости конденсатора С и от частоты переменного напряжения ω.

Это реактивное сопротивление, которое используется в расчетах цепей, содержащих инерционные, реактивные компоненты. То есть везде, где применяются конденсаторы и катушки индуктивности.

Назначение компонента

Из рассмотренных свойств ясно, что нужны конденсаторы не как источники электрического питания, а именно как реактивные элементы схем, чтобы создавать определенные режимы переменного/импульсного тока.

Используются конденсаторы настолько многообразно, что здесь, на уровне «конденсатор для чайников», можно перечислить только бегло их применение:

  • В выпрямителях служат для сглаживания пульсаций тока.
  • В фильтрах (совместно с резисторами и/или индуктивностями) выступают в роли частотно зависимого элемента для выделения или гашения определенной полосы частот.
  • В колебательных контурах используется конденсатор, работающий при генерации синусоидального напряжения.
  • Несут функцию накопителя в устройствах, где нужно обеспечить мгновенное выделение большой энергии в виде импульса — например, в фотовспышках, лазерах и т.д.   
  • Используются в схемах точного управления временными событиями с использованием простейших по строению RC-цепей — реле времени, генераторы одиночных импульсов и т.д.
  • Фазосдвигающий конденсатор применяется в схемах питания синхронных и асинхронных, а также однофазных и трехфазных двигателей переменного тока.

Кроме собственно прибора «конденсатор», вполне успешно используются в технике явления, в основе которых лежит электрическая емкость.

Уровень можно измерить, используя факт того, что  жидкость, поднимаясь в датчике между проводниками, играющими роль обкладок, меняет диэлектрическую проницаемость среды, а, следовательно, и емкость прибора, что он и показывает как изменение уровня.

Принцип работы и назначение конденсатора в электрической цепи
Если жидкость — вода, то она и сама может играть роль обкладки

Измерение сверхмалых толщин

Аналогично этому, сверхмалые толщины можно измерять, меняя расстояние между двумя проводниками-обкладками или их эффективную площадь.

Источник: https://domelectrik.ru/baza/komponenty/dlya-chego-nuzhen-kondensator

Принцип работы конденсатора

Конденсатор – элемент, способный накапливать электрическую энергию. Название происходит от латинского слова «condensare» — «сгущать», «уплотнять».

Первый конденсатор был создан в 1745 году Питером ванн Мушенбруком. В честь города Лейдена, в котором его создали, изобретение впоследствии назвали «Лейденской банкой».

Конденсатор состоит из металлических электродов – обкладок, между которыми находится диэлектрик. По сравнению с обкладками, диэлектрик имеет небольшую толщину. Это и определяет свойство конденсатора накапливать заряд: положительные и отрицательные заряды на его обкладках удерживают друг друга, взаимодействуя через тонкий непроводящий слой.

Читайте также:  Пусковые конденсаторы для электродвигателей 220в: для чего нужны и как подобрать

Емкость конденсатора зависит от:

  • площади обкладок (S);
  • расстояния между ними (d);
  • диэлектрической проницаемости материала диэлектрика между обкладками (ԑ).

Принцип работы и назначение конденсатора в электрической цепиПараметры конденсатора

Связаны они между собой формулой (формула емкости конденсатора):

Принцип работы и назначение конденсатора в электрической цепи

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон.

Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью.

Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга.

Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд.

Принцип работы конденсатора: его заряд и разряд

Заряд конденсатора. В момент подключения к источнику постоянного тока через конденсатор начинает протекать ток заряда. Он убывает по мере зарядки конденсатора и в итоге падает до величины тока саморазряда, определяющегося проводимостью материала диэлектрика.

Напряжение на конденсаторе плавно нарастает от нуля до напряжения источника питания.

Принцип работы и назначение конденсатора в электрической цепиСхема заряда конденсатораПринцип работы и назначение конденсатора в электрической цепиВременные характеристики заряда конденсатора

При заряде конденсатора ток и напряжение изменяются по экспоненциальному закону. Время заряда можно определить по формуле:

Принцип работы и назначение конденсатора в электрической цепи

Если сопротивление в формулу подставить в Омах, в емкость – в Фарадах, то получим время в секундах, за которое напряжение на конденсаторе изменится в е ≈ 2,72 раз. Конденсатор большей емкости будет разряжаться дольше, и быстрее разрядится на меньшую величину сопротивления.

Разряд конденсатора. Если к заряженному конденсатору подключить сопротивление нагрузки, то ток через нее вначале будет максимальным, затем плавно упадет до нуля. Напряжение на его обкладках тоже будет изменяться по экспоненциальному закону.

Принцип работы и назначение конденсатора в электрической цепиСхема разряда конденсатораПринцип работы и назначение конденсатора в электрической цепиВременные характеристики разряда конденсатора

Применение конденсаторов

Наряду с резисторами конденсаторы являются самыми распространенными компонентами. Ни одно электронное изделие не может без него обойтись. Вот краткий перечень направлений использования конденсаторов.

Блоки питания: в качестве сглаживающих фильтров при преобразовании пульсирующего тока в постоянный.

Звуковоспроизводящая техника: создание при помощи RC-цепочек элементов схем, пропускающих звуковые сигналы одних частот и задерживая остальные. За счет этого удается регулировать тембр и формировать амплитудно-частотные характеристики устройств.

Радио- и телевизионная техника: совместно с катушками индуктивности конденсаторы используются в составе устройств настройки на передающую станцию, выделения полезного сигнала, фильтрации помех.

Электротехника. Для создания фазовых сдвигов в обмотках однофазных электродвигателей или в схемах подключения трехфазных двигателей в однофазную сеть. Используются в установках, компенсирующих реактивную мощность.

При помощи конденсаторов можно накопить заряд, превышающий по мощности источник питания. Это используется для работы фотовспышек, а также в установках для отыскания повреждений в кабельных линиях, выдающих мощный высоковольтный импульс в место повреждения.

Источник: http://electric-tolk.ru/naznachenie-i-princip-raboty-kondensatora/

Конденсатор — что это такое, виды и способы применения

На вопрос, что такое конденсатор, вкратце можно ответить следующим образом – это элемент, который накапливает заряд электрического тока, а в определенный момент передает его последующим компонентам цепи. Конденсатор – радиодеталь, без которой не обойтись ни в одной электронной схеме. Опытные мастера и специалисты в области электроники и радиолюбители ласково называет его “кондер” (кондюк).

Самый примитивный конденсатор состоит из электродов, имеющие пластинчатый вид. Эти электроды разделены друг от друга специальным диэлектриком.

Он изготавливается из самых различных материалов, не пропускающих ток. На них и происходит непосредственно накопление заряда. Так как имеется два электрода, соответственно заряд имеет разные полярности.

Одна пластина имеет положительный, другая отрицательный.

Величина электрического заряда в конденсаторе измеряется в фарадах. Есть производный от этой единицы измерения – микрофарада, нанофарада. Эти единицы измерения являются основными, так как одна фарада – огромная емкость, которая не используется на практике совсем.

В данной статье подробно описано что такое конденсатор. Читатель узнает, для чего нужна эта радиодеталь, посмотрит видеоролик, где вкратце расскажут о ее назначении. Те, кто дочитает до конца, в качестве бонуса могут скачать интересную статью по теме.

Принцип работы и назначение конденсатора в электрической цепи

Принцип работы и назначение

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд.

В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд.

Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах.

Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.

Принцип работы и назначение конденсатора в электрической цепи Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон.

Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью.

Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление.

Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд.

В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.

Принцип работы и назначение конденсатора в электрической цепи Таблица типовых обозначений и маркировки конденсаторов.

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз.

Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад.

Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах  (mF), пикофарадах  (nF), нанофарадах ( nF).

Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.

  Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.

Как проверить деталь

Принцип работы и назначение конденсатора в электрической цепи Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр. Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – как прозванивать мультиметром, как и при проверке резисторов – что такое резистор.

Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер).

Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем.

После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен.

Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен.

Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Источник: https://ElectroInfo.net/kondensatory/kondensator-prostymi-slovami-o-slozhnom.html

Что такое конденсатор?

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях.

Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.

Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

Читайте также:  Компрессорные станции магистральных газопроводов

Принцип действия

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике.

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы посмотрите статью про то, как сделать простой конденсатор своими руками.

Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток, поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.

На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника.

При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться.

Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.

Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

  • Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.
  • Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.
  • Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.
  • Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.
  • В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Принцип работы и назначение конденсатора в электрической цепи

Источник: https://podvi.ru/elektrokompanenty/naznachenie-kondensatora-i-princip-ego-raboty.html

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора. Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным.

Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным.

В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов.

Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

Принцип работы и назначение конденсатора в электрической цепи

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес.

Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е.

конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю.

Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

  • Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:
  • C = q / U (69)
  • Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

Рис. 181. Заряд и разряд конденсатора

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком.

Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис.

183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184).

Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость.

Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями.

Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик.

При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным.

Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с.

и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Читайте также:  Smd-резистор: таблица типоразмеров и мощности чипов, подстроечные резисторы

Рис. 186. Устройство конденсатора переменной емкости

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине).

Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом.

Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока.

При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока.

Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов. Конденсаторы можно соединять последовательно и параллельно. При последовательном

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Рис. 190. Кривая пилообразного напряжения

  1. соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость
  2. 1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3
  3. эквивалентное емкостное сопротивление
  4. XCэк= XC1 + XC2 + XC3
  5. результирующее емкостное сопротивление
  6. Cэк = C1 + C2 + C3
  7. При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость
  8. 1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Включение и отключение цепей постоянного тока с конденсатором.

При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис.

188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б).

Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

  • Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени
  • T = RC
  • Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств.

Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е.

сопротивлениями резисторов, включенных в эти цепи.

Источник: https://electrono.ru/peremennyj-tok/52-kondensatory-ix-naznachenie-i-ustrojstvo

Для чего нужен конденсатор

Главная > Теория > Для чего нужен конденсатор

Данный элемент применяется практически в любых электронных приборах, поэтому, чтобы понять, в чем назначение конденсаторов, необходимо разобраться в их устройстве и принципах функционирования.

Конденсатором называется одна из составных частей электрической цепи, у которой имеются две проводящие обкладки (одна обладает положительным зарядом, а другая – отрицательным).

Чтобы исключить саморазрядку устройства, между обкладками помещают специальное вещество – диэлектрик, который препятствует перетоку заряда.

Классификация устройств

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда.

Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях.

Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами.

К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением.

Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии).

Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно.

Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд. Ведь, как только прибор подключается к источнику тока, напряжение в цепи равно нулю.

Затем, по мере наполнения зарядами, напряжение становится равным тому, которое подается от источника.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Возможное применение устройств

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Наличие возможности накопить заряд, а потом быстро его направить в сеть позволяет сделать устройство незаменимым элементом при изготовлении лазеров, вспышек для фотоаппаратов и других подобных приборов.

Таким образом, без использования описываемого устройства практически невозможно представить современную электронную и электротехническую промышленность.

Благодаря пониманию того, как работает конденсатор, его активно применяют при производстве различных устройств, как промышленного, так и бытового назначения.

Он помогает обеспечить безопасность электрической цепи и увеличивает срок службы различных приборов.

Видео

Как проверить конденсатор мультиметром

Источник: https://jelectro.ru/teoriya/dlya-chego-nuzhen-kondensator.html

Ссылка на основную публикацию
Adblock
detector