Схема лабораторного бп: от простейшего до мощного с легкой регулировкой

Лабораторный блок питания может пригодится практически каждому радиолюбителю для отладки и работы с электроникой. В данной статье мы рассмотрим сборку лабораторного блока питания, схема которого довольно известна в сети интернет. Схема является довольно популярной, была собрана множеством радиолюбителей по всему миру.

В виду её популярности, в Китае так же наладили производство кит-набора, с помощью которого можно спаять схему, немного сэкономив на времени при изготовлении печатной платы, и поиске компонентов. Я решил заказать этот набор, и посмотреть что из этого получится. В блоке питания имеется регулировка как по току, так и напряжению.

Данный пост будет содержать минимум теории, и больше фото для показа что в итоге получилось.

Принципиальная схема блока питания:

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Схема найдена в интернете, некоторые компоненты на схеме выше заменены советскими аналогами, в целом схема идентична.

Сам набор с компонентами добрался в таком виде:

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Перед началом сборки выяснилось что некоторые компоненты пришли ни тех номиналов. Что касается подобного рода посылок, то это довольно распространённая практика. Поэтому рекомендуется всегда проверять элементы перед сборкой. В моём случае шунтирующий резистор (R7) оказался 47 Ом, а должен быть 0.47 Ом.

Кроме того операционники оказались с дефектом, и после сборки не регулировалось напряжение и ток. Всё исправилось заменой этих компонентов. Читал в интернете, у некоторых схема начинает работать сразу после сборки. У некоторых приходят с дефектами или неправильными номиналами элементов.

Очевидно, мне попалось и то и другое, в общем с ситуацией разобрался, и плата собрана и работает.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

На схеме так же имеется стабилизатор напряжения 7824, я решил заменить его на 7812, который будет выдавать 12 В для запитки куллера + индикатора напряжения и тока.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

В качестве трансформатора временно решил использовать от старого бесперебойника. Плата вывозит нагрузку на 3А, однако легко дорабатывается некоторой заменой компонентов. После этого при необходимости можно повысить выдаваемый ток блоком питания.

Протестировав схему, стало понятно, что радиатор на выходном транзисторе маловат в своих габаритах, и не справляется с рассеиванием тепла. После чего решил прикрутить транзистор на радиатор от старого 478-го процессора. Как положено, с использованием термопасты для лучшей проводимости, т.к.

узел весьма показался мне уязвимым в вопросе перегрева.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Решил повесить нагрузку в пару ампер на блок питания, посмотреть как быстро будет греться радиатор на транзиcторе. Минуты две при такой нагрузке радиатор спокойно рассеивает температуру после чего уже требуется принудительное охлаждение.

Решил немного доработать охлаждение радиатора, и вместо того, чтобы вентилятор жужал постоянно, сделал схему, которая будет включать его при пиковых нагрузках.

В сети интернет есть схема, которая реализована за счёт необычной способности транзистора КТ315 менять свои свойства при смене температуры.

Схема регулятора оборотов вентилятора охлаждения:

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Собрал эту схему довольно быстро, она так же популярна в сети интернет. Особенность этой схемы в том, что в качестве датчика выступает транзистор КТ315. Этот транзистор к счастью оказался под рукой. Что касается VT2 то я решил заменить его современным аналогом, т.к. в магазинах всё реже можно найти детали старой базы.

Самое время делать корпус для блока питания и собирать это всё дело в кучу. Т.к. под рукой оказался корпус от бесперебойника компьютера, решил попробовать затолкать в него все компоненты, а так же сделать более правильную «морду», с регуляторами индикаторами и тумблером.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Переменные резисторы решил заказать другие, т.к. регулировка с многооборотистым резистором гораздо плавнее. В ходе испытаний выяснилось что индикатор напряжения имеет погрешность 0,01В, а вот что касается тока, то там наблюдается нелинейность в измерении. Исправляется пайкой одной перемычки на плате (в сети много об этом есть постов). Крепёж под «бананы», а так же тумблер включения питания.

Вот такая тушка под корпус лабораторника, переднюю и заднюю панель я открутил, так как она не пригодится, и панели у прибора будут другие.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

В качестве материала для панели решил взять гетинакс, толщиной 5 мм. Причина такого выбора в том что его легко обрабатывать, диэлектрик, да и оказался под рукой.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Отверстия сверлились свёрлами и отрезными дисками для бор машины. Процесс изготовления корпуса — творческий, а поэтому в моём случае затянуться на больше чем ожидалось).

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Элементы на панели вырезанные из листа гетинакса не стыковались с отверстиями которые были на железном корпусе. Таким образом чтобы разместить элементы потребовалось так же немного подрезать сам металлический корпус.

Урезая корпус под нужды элементов управления, это его значительно ослабляет в плане жесткости. Я же стремился сделать его более надёжным и качественным. В итоге простая переделка перешла в фазу «глубокой» переделки, в ходе чего была срезана задняя панель полностью, и добавлены рёбра жесткости.

Для примерки первый крепёж был сделан что называется на «шару» для того чтобы немного прикинуть размещение элементов. В ходе чего было выяснено, что так же потребуется сделать дополнительную планку по центру, чтобы прикрутить к ней два радиатора, и пару схем.

Article2

Сделал всё как задумал, хоть и можно было проще затолкать как получиться, но хотелось сделать как виделось правильным. Оставил запас места под трансформатор большего размера.

Сам трансформатор разместил по центру, для более правильной развесовки прибора, а так же рассеивания тепла. Радиатор разместил ближе к задней стенке где находится вентилятор кулера. Сама плата блока питания так же находится ближе к кулеру.

 Плата управления ближе к передней панели, и в таком положении, чтобы место в центральной части где находится трансформатор оставалась в запасе.

Немного творческого беспорядка, на пару дней, в итоге подогнал все элементы по местам, и спаял узлы в последствии. Радиатор изолировал от корпуса, в итоге были сделаны специальные посадочные площадки из гетинакса которые одной стороной крепились к корпусу другой к радиатору. Получился некий пазл, которой держал всё это дело прочно на своих местах.

После первой сборки и спайки самоё время проверить работоспособность прибора. После сборки прибор включился но регулировалось напряжение и ток. В итоге выяснилось, что многооборотистые резисторы были припаяны немного неправильно, и это дело быстро исправилось.

В целом, всё практически готово. Датчик регулятора скорости вращения вентилятора (транзистор КТ315) так же был прикручен около выходного транзистора блока питания, который размещался на радиаторе.

Таким образом он быстрее реагирует на смену температуры выходного транзистора не дожидаясь нагрева всего радиатора.

  • Регуляторы на переменные резисторы мне показались довольно габаритными для этой панели, поэтому ставить их пока не стал, и заказал другие специальные для данного типа резисторов.

Вот такой получился танк. На задней панели сделаны отверстия под для вентилятора, предохранитель, а так же гнездо питания на 220 В. Центральный контакт гнезда как и положено заземлил на корпус блока питания. Хотя в наших розетках и нету третей точки — заземления, но пускай будет хотя бы в приборе, на будущее.

  1. Проводка в блоке так же была связана, чтобы не было механического воздействия на места припоя при эксплуатации прибора.

В дальнейшем прибор так же планируется дорабатываться и в плане мощности, и возможно немного по внешнему виду. А пока результат он выглядит таким вот образом.

Сама плата с базовыми элементами способна выдавать от 0 до 30 Вольт, с током от 0 до 3 Ампер. Осциллограммы к сожалению показать не могу, т.к. нет осциллографа под рукой.

Конечно это не много, ну и не мало тоже. По этой причине в дальнейшем планируется доработка в сторону увеличения мощности, путем замены элементной базы, от трансформатора до транзисторов.

Разумеется насколько это позволят сами дорожки платы.

Источник: https://cxem.net/pitanie/5-382.php

Самодельный лабораторный регулируемый БП

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Много различных лабораторных блоков питания представлено в интернете на радиотехнических сайтах, правда в основном простые конструкции. Эта же схема отличается достаточно высокой сложностью, которая оправдывается качеством, надёжностью и универсальностью БП. Представляем полностью самодельный блок питания с двухполяркой 2 х 30 В, с регулируемым током до 5 А и цифровым светодиодным А/В метром.

Читайте также:  Как сделать внешнюю антенну для 4g модема yota своими руками

На самом деле это два одинаковых блока питания в одном корпусе, что значительно увеличивает функциональность и возможности устройства, позволяя объединить мощности каналов вплоть до 10 Ампер.

В то же время это не типичный симметричный источник питания, хотя тут можно подключать последовательные выходы для получения более высокого напряжения или псевдо симметрии, рассматривая общее соединение как массу.

Схемы модулей лабораторного БП

Все схемы плат питания были спроектированы с нуля, также и все печатные платы являются самостоятельной разработкой.

Первый модуль «Z» — это диодный мост, фильтрация напряжения, формирование отрицательного напряжения для питания операционных усилителей, источник положительного напряжения 34 В постоянного тока для операционных усилителей, питание от отдельного вспомогательного трансформатора, реле, используемое для переключения обмоток главного трансформатора, управляемых от другой печатной платы, и источник питания 5 В 1 A для измерители мощности.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Модули «Z» обоих блоков были сконструированы так, чтобы быть почти симметричными (чтобы лучше вписываться в корпус БП). Благодаря этому разъемы ARK были размещены на одной стороне для подключения проводов и радиатора для мостового выпрямителя, а платы, как показано на рисунках, размещены симметрично.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Здесь использован 8-амперный диодный мост. Основные трансформаторы имеют двойные вторичные обмотки, каждая 14 В и ток чуть более 5 А. Блок питания был рассчитан на 5 ампер, но оказалось, что при полном напряжении 30 В не получается полных 5 А. Тем не менее, нет проблем с нагрузкой 5 ампер при более низком напряжении (до 25 В).

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Второй модуль представляет собой расширенный вариант блока питания с операционными усилителями.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

В зависимости от того, нагружен источник питания или находится в режиме ожидания, напряжение в области усилителя U3, ответственного за ограничение тока, изменяется (при той же настройке пределов потенциометра). Схема сравнивает напряжение на потенциометре P2 с напряжением на резисторе R7.

Часть этого падения напряжения подается на инверсный вход U4. Благодаря этому выходное напряжение зависит от настройки потенциометра и практически не зависит от нагрузки.

Почти потому, что по шкале от 0 до 5 А отклонение находится на уровне 15 мВ, чего на практике достаточно, чтобы получить стабильный источник для управления схемами LM3914, образующими светодиодную линейку.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Схема визуализации особенно полезна, когда для регулировки используются многооборотные потенциометры. Замечательно, что с помощью такого потенциометра можно легко установить напряжение с точностью до третьего знака после запятой.

Каждый светодиод в линейке соответствует току 0,25 А, поэтому, если предел тока ниже 250 мА, линия не отображается.

Способ отображения линейки можно изменить с точки до линейки, но здесь выбрана точка, чтобы избежать влияния слишком большого количества световых точек и снизить энергопотребление.

  • Следующим модулем является система переключения обмоток и система управления вентиляторами, что установлены на радиаторах старых процессоров.

Питание цепей от независимых обмоток вспомогательного трансформатора. Тут использованы м/с ОУ LM358, которые содержат внутри два операционных усилителя. В качестве датчика температуры использован транзистор BD135.

После превышения 55C вентиляторы включаются, а после охлаждения примерно до 50C автоматически выключаются.

Система переключения обмотки реагирует на значение напряжения на клеммах прямого выхода источника питания и имеет гистерезис около 3 В, поэтому не будет слишком частого срабатывание реле.

Измерение напряжения и тока нагрузки осуществляется с помощью чипов ICL7107. Платы счетчиков являются двухсторонними и имеют такую ​​конструкцию, что для каждого источника питания на одной плате имеется вольтметр и амперметр.

Полезное:  Как от USB получить 12 вольт — инвертор 5/12 В

С самого начала идея состояла в том, чтобы визуализировать параметры блоков питания на семисегментных LED дисплеях, потому что они более читабельны, чем ЖК-дисплей.

Но ничто не мешает измерять температуру радиаторов, переключателей обмоток и системы охлаждения на одном МК Atmega, даже сразу для обоих источников питания. Это вопрос выбора.

Использование микроконтроллера выйдет дешевле, но как уже писали выше — это дело вкуса.

Все вспомогательные системы питаются от трансформатора, который был перемотан путем удаления всех обмоток, кроме сетевой 220 В (первичной). Для этой цели использовался TS90 / 11.

В качестве вторичной обмотки намотаны 2 x 26 В переменки для питания операционных усилителей, 2 x 8 В переменки для питания индикаторов и 2 x 13 В для питания контроля температуры. Всего было создано шесть независимых обмоток.

Корпус и раходы на сборку

Весь БП помещен в корпус, который также был разработан с нуля. Он был сделан на заказ. Известно, что в домашних условиях сложно сделать достойную коробку (особенно металлическую).

  1. Алюминиевая лицевая панель, используемая для крепления всех индикаторов и дополнительных элементов, была изготовлена ​​на фрезерном станке в соответствии с конструкцией.

Безусловно, это не малобюджетная реализация, учитывая покупку двух мощных тороидальных трансформаторов и исполнение корпуса на заказ. Хотите попроще и подешевле — делайте такие БП.

Остальное можно оценить исходя из цен в интернет-магазинах. Конечно, некоторые элементы были получены из собственных запасов, но их тоже нужно будет покупать, создавая блок питания с нуля. Общая стоимость вышла на уровне 10000 рублей.

Сборка и настройка ЛБП

Рекомендуем строить этот лабораторный БП в следующем порядке:

  1. Сборка и проверка модуля с мостовым выпрямителем, фильтрацией и реле, подключение к трансформатору и активация реле от независимого источника для проверки выходных напряжений.
  2. Исполнение модуля переключения обмоток и контроля охлаждения радиаторов. Запуск этого модуля облегчит настройку будущего источника питания. Для этого понадобится другой источник питания для подачи регулируемого напряжения на вход системы, отвечающей за управление реле.
  3. Температурная часть схемы может быть настроена путем моделирования температуры. Для этой цели использовалась тепловая пушка, которая аккуратно нагревала радиатор с датчиком (BD135). Температура измерялась с помощью датчика, включенного в мультиметр (в то время не было готовых точных измерителей температуры). В обоих случаях настройка сводится к подбору PR201 и PR202 или PR301 и PR302 соответственно.
  4. Затем запускаем блок питания, регулируя RV1 таким образом, чтобы получить 0 В на выходе, что полезно при настройке ограничения тока. Само ограничение зависит от значений резисторов R18, R7, R17.
  5. Регулирование А/В индикаторов сводится к настройке опорных напряжений между контактами 35 и 36 микросхем ICL. В измерителях напряжения и тока использовался внешний эталонный источник. В случае с измерителями температуры такая точность не нужна, а отображение с десятичным знаком все же несколько преувеличено. Передача показаний температуры осуществляется одним выпрямительным диодом (на схеме их три). Это связано с дизайном печатной платы. На ней есть две перемычки.
  6. Непосредственно на выходных клеммах к вольтметру подключен делитель напряжения и резистор 0,01 Ом / 5 Вт, на котором падение напряжения используется для измерения тока нагрузки.

Дополнительным элементом источников питания является схема, которая позволяет включать только один источник питания без необходимости использования второго канала, несмотря на тот факт, что вспомогательный трансформатор питает оба канала источника питания сразу. На той же плате размещена система для включения и выключения блока питания с помощью одной слаботочной кнопки (для каждого канала блока питания).

Схема питается от инвертора, который в состоянии ожидания потребляет около 1 мА от сети 220 В. Все схемы в хорошем качестве можете скачать в архиве

25,00

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Источник: https://2shemi.ru/samodelnyj-laboratornyj-reguliruemyj-bp/

Лабораторный блок питания своими руками 1,3-30В 0-5А

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Читайте также:  Посудомоечная машина korting kdff 2050: характеристики, отзывы, сравнение с конкурентами

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В.

Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток.

Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов.

Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8.

Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2.

На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В.

Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2.

Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Лабораторный блок питания 30в 5а, результат

  • Плата управления собранная на макетке.
  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  • Плата основного диодного моста.
  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  • Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  • Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

  1. Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

  1. Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.
  2. Лабораторный блок питания собрал своими руками Виктор. Трансформатор: взял с бесперебойника. Транзисторы: пара TIP36C. На выходе: ток до 5А.
  3. Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

    Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

  4. Самодельный лабораторный блок питания от Валерия. Трансформатор: ТПП-307: пара TIP36C. На выходе: ток до 3,6А. Из за проблем с трансформатором, выжать больше не получилось.
  5. Еще один лабораторный блок питания от Алексея. Трансформатор: ТПП-312: Силовые транзисторы пара TIP36C. На выходе: ток до 5,5А. Из за небольшой ошибки в трассировке дорожек этот БП занял у Алексея очень много времени и сил.
  6. Свой лабораторный блок питания, который собран по нашей схеме, прислал нам Сергей. Транзисторы: пара TIP36C. Трансформатор: перемотанный трансформатор от UPS. Отдельно хотелось отметить, что такой трансформатор без перемотки не хотел корректно работать в БП. Дополнительно Сергей модифицировал свой блок питания, а именно оснастив его системой автоматической регулировки оборотов вентилятора, снятой со старого компьютерного блока питания. Стоимость блока получилась примерно в 2700 руб.
  7. Этот лабораторный блок питания мы получили от Александра. Во время сборки Александр не однократно сталкивался с различными проблемами, не смог подружить пару транзисторов и не сразу разобрался с питанием LM301. Но благополучно их решил и не стал опускать руки. Транзисторы: пара TIP36C. Трансформатор: ТПП 322. На выходе 30В и 5А.
  8. Такой блок мы получили от Андрея. Выдает 19,5-20 В и 5 А. Порог установлен на 4,5 А. Хотя однако трансформатор может намного больше (32 В; 6 А). Добавлены последовательно к переменным резисторам еще по одному, номиналом 10% от базового. Транзисторы: пара TIP36C. Трансформатор: тороидальный от радиолы.

Источник: https://diodnik.com/laboratornyj-blok-pitaniya-svoimi-rukami-13-30v-0-5a/

Самодельный импульсный блок питания с регулировкой напряжения и тока. — DRIVE2

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкойУсловно блок питания можно разделить на 3 части:

    1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать  готовый AC-DC преобразователь с китая вот такого типа:

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой  2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

Читайте также:  Как согнуть алюминиевую трубу: способы в домашних условиях, процесс изгибания, особенности производства, ошибки при работе

Схема лабораторного БП: от простейшего до мощного с легкой регулировкойСхема лабораторного БП: от простейшего до мощного с легкой регулировкой

3 Силовая часть.Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Входной фильтр, выпрямитель, конденсаторы из компьютерного блока питания.Начинающего радиолюбителя может испугать трансформатор управления силовыми ключами, его придётся изготовить самостоятельно.

Но не спешите с выводами, уверяю вас сделать его очень просто.Понадобится ферритовое колечко R16*10*4.5 и три отрезка по 1 метру провода МГТФ 0.07кв.мм. Просто наматываем на кольце 30 витков в 3 провода.

Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).

Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.

Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:Схема лабораторного БП: от простейшего до мощного с легкой регулировкойВсе основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.

При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.Для управления вентилятором я как правило использую схему управление по температуре на lm317Схема лабораторного БП: от простейшего до мощного с легкой регулировкойили термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).

Схема лабораторного БП: от простейшего до мощного с легкой регулировкойВот и корпус будущего бп уже практически готов:Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Необходимые файлы для повторения

Источник: https://www.drive2.ru/b/541858022939428076/

Лучший самодельный блок питания

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов.

В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость.

Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться.

Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4.

 Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой Схема лабораторного БП: от простейшего до мощного с легкой регулировкой Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

   Форум по БП

   Обсудить статью Лучший самодельный блок питания

Источник: https://radioskot.ru/publ/luchshij_samodelnyj_blok_pitanija/1-1-0-1136

Простой лабораторный блок питания

Сергей Никитин

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств. Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

Схема лабораторного БП: от простейшего до мощного с легкой регулировкой В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания. Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.

По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

  • Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе. Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя. Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей. Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825. Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри. Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24. Далее берётся медный провод, диаметром 1,0 — 1,5 мм и мотается до заполнения окна сердечника полностью. У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.

Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 — 5 слоёв обычной писчей бумаги).

  1. Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  2. Схема лабораторного БП: от простейшего до мощного с легкой регулировкой
  3. Схема лабораторного БП: от простейшего до мощного с легкой регулировкой

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше — залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук «цикания» . Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува. Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно. На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это «временно» уже довольно долго работает.

Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель «Напряжение» — «Ток». На схеме это просто не показал.

 

Источник: https://vprl.ru/publ/istochniki_pitanija/bloki_pitanija/prostoj_laboratornyj_blok_pitanija/11-1-0-112

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]