Триггеры на транзисторах (шмитта) и реле (на логических элементах)

Всем доброго времени суток. В прошлой статье я рассказывал о симметричных триггерах – RS- и T-триггерах. Сегодняшняя моя статья познакомит вас с ещё одной разновидностью триггеров – несимметричный триггер, который имеет более известное название – триггер Шмитта.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

О триггерах Шмитта в интегральном исполнении я уже рассказывал в одной из предыдущих статей. Давайте вспомним чем, прежде всего, характеризуется данный тип триггера. Как мы помним из предыдущей статьи триггеры характеризуются несколькими устойчивыми состояниями.

Так вот в триггере Шмитта переход из одного устойчивого состояния в другое осуществляется только при определённых значениях входного напряжения, которые называются уровнями срабатывания триггера или просто пороговыми уровнями.

Таким образом, можно сказать, что несимметричный триггер имеет гистерезисный характер передаточной характеристики.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах) Передаточная характеристика триггера Шмитта.

Принцип работы триггера Шмитта

В идеальном случае передаточная характеристика триггера Шмитта имеет вид изображённый на рисунке выше. В случае если входное напряжение триггера не превышает напряжение срабатывания U1 (UВХ < U1), то триггер находится в одном из устойчивых состояний, а напряжение на выходе находится на уровне Е0 (UВЫХ = Е0).

Когда же напряжение на входе превысит порог срабатывания (UBX > U1), то триггер моментально перейдёт в другое устойчивое состояние и напряжение на выходе станет равным рабочему напряжению триггера Е1 (UВЫХ = Е1).

После этого напряжение на входе может изменяться в некоторых пределах, но на выходе останется постоянным и равным рабочему напряжению Е1.

Чтобы вернуть триггер Шмитта в исходное состояние, необходимо, чтобы напряжение на входе уменьшилось до некоторого уровня, называемого порогом отпускания триггера. Как только напряжение на входе уменьшится до некоторого уровня напряжения U2 (UВХ < U2), то триггер скачкообразно перейдёт в исходное состояние, при котором напряжение на выходе будет равным Е0 (UВЫХ = Е0).

Величины напряжений пороговых уровней срабатывания и отпускания триггера полностью определяются элементами электронной схемы данного типа триггера.

Как правило, в настоящее время триггеры Шмитта изготавливаются в интегральном исполнении, параметры которого удовлетворяют в большинстве случаев. Но в некоторых случаях имеет место изготовление данного типа триггеров и в дискретном исполнении, например, в экспериментальной или высоковольтной отраслях. Давайте рассмотрим схему триггера Шмитта в дискретном исполнении на транзисторах.

Схема триггера Шмитта на транзисторах и принцип её работы

Схема триггера Шмитта представлена на изображении ниже.

Триггер Шмитта или несимметричный триггер имеет схожую структуру с симметричным триггером, отличие между ними заключается в том, что одна из коллекторно-базовой цепи симметричного триггера заменена на общую эмиттерную связь. В результате коллектор транзистора VT2 не связан с базовой цепью VT1 и нагрузка, подключённая к коллектору VT2, мало влияет на работу триггера.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах) Схема триггера Шмитта на биполярных транзисторах.

  • В общем случае несимметричный триггер или триггер Шмитта состоит из следующих элементов: транзисторы VT1 и VT2, имеющие гальваническую связь между собой и через резистор R5 присоединены к общей шине питания; резисторы R1 и R2, обеспечивающие режим работы транзистора VT1 и исходное состояние схемы в целом; резисторы R3 и R7, являющиеся коллекторными нагрузками транзисторов VT1 и VT2 соответственно; резисторы R4 и R6, которые образуют делитель напряжения, тем самым определяя необходимые пороги срабатывания триггера; конденсатор C1, служащий для ускорения переключения триггера.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах) Временные диаграммы входных и выходных напряжений триггера Шмитта (несимметричный триггер).

Рассмотрим принцип работы триггера Шмитта по его временным диаграммам изображенным выше. При подключении источника питания к триггеру, он переходит в исходное состояние, при котором транзистор VT1 закрыт, а транзистор VT2 открыт. В этом случае на выходе триггера присутствует некоторое напряжение Uэ, которое зависит от элементов обвязки транзистора VT2

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

  1. В случае, когда входное напряжение превысит порог срабатывания, транзистор VT1 откроется, а VT2 соответственно закроется и напряжение на выходе триггера резко возрастёт до значения примерно равному напряжению источника питания.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Как я уже писал выше, триггер Шмитта имеет два уровня напряжения (пороги срабатывания), разность между которыми называется шириной петли гистерезиса.

Ширина петли гистерезиса зависит от величины резистора, а порог срабатывания триггера от соотношения делителя напряжения, который образуется резисторами R4 и R6.

Вследствие чего большой проблемой является отдельная регулировка, как ширины петли гистерезиса, так и порогов срабатывания триггера.

Триггер Шмитта с независимой регулировкой гистерезиса и уровней срабатывания

Для осуществления независимой регулировки параметров триггера Шмитта между транзисторами VT1 и VT2 включается буферный элемент (очень часто эмиттерный повторитель). В результате этого уменьшается влияние резистора R3 на делитель напряжения R4R6, а также повышается чувствительность схемы в целом.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах) Схема триггера Шмитта с буферным элементом.

Расчёт триггера Шмитта

Исходные данные: амплитуда импульсов Um = 10 В, максимальный выходной ток триггера Im = 10 мА, напряжение срабатывания триггера U1 = 5 В, напряжение отпускания триггера U2 = 3 В, частота следования импульсов fm = 5 МГц, длительность фронта и среза импульсов tf = ts ≤ 10 нс.

  1. Определение напряжения источника питанияТриггеры на транзисторах (Шмитта) и реле (на логических элементах)
  2. Выбор транзистора. Транзистор должен соответствовать следующим условиямТриггеры на транзисторах (Шмитта) и реле (на логических элементах)Данным параметрам соответствует транзистор КТ315Д со следующими характеристиками:Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  3. Определяем сопротивление коллекторных резисторов R3 и R7 транзистора VT1 и VT2.Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  4. Вычисляем сопротивление резистора R5 в эмиттерных цепях транзисторов.
  5. Находим сопротивления резисторов R4 и R6. Для этого введём коэффициент пропорциональности λ, между резисторами.Сопротивление резистора R4 вычислим по следующей формулеТогда сопротивление резистора R6 будет равно
  6. Определяем сопротивление резисторов R2.
  7. Определяем сопротивление резистора R1.
  8. Вычисляем значение ёмкости ускоряющего конденсатора С1.

Выполненный расчёт является предварительным, так как из-за разброса параметров элементов схемы возможны некоторые отклонения от заданных условий схемы. После выбора номиналов элементов необходимо провести прямой проверочный расчёт пороговых уровней напряжения U1 и U2 по следующим формулам

Прямой проверочный расчёт важен, в случае если ширина петли гистерезиса (U2 – U1) находится в пределах нескольких долей вольта.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: https://www.electronicsblog.ru/impulsnaya-texnika/trigger-shmitta-na-tranzistorax.html

Логические элементы — триггеры, и другие.

Принцип работы электронного триггера.

Слово триггер(trigger), по английски означает — спусковой крючок. Функция триггера — мгновенное переключение из одного устойчивого состояние в другое, под действием внешнего, управляющего фактора.

Существуют пневматические, механические и релейные схемы триггеров. Но электронные схемы, по надежности и самое главное — быстродействию, безусловно,вне конкуренции. Электронная схема триггера состоит из двух усилительных каскадов и по своей сути, является одной из разновидностий мультивибратора.

Выход каждого из каскадов подключен к входу другого, но не через конденсаторы, как в обычном симметричном мультивибраторе а через резисторы. Номиналы этих резисторов подобраны так, что каскад с полностью открытым транзистором, уверенно запирает транзистор другого каскада. Если подать на триггер питающее напряжение, то оба каскада начинают «бороться» между собой, пытаясь закрыть друг-друга.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Как бы не были транзисторы близки по характеристикам, один из них(присвоим ему номер1) обязательно окажется
«сильнее» и закроет другой (для удобства обозначим его как номер 2)
Все происходит очень быстро, выглядит так, что транзистор 1 мгновенно оказывается открытым, а другой (2) закрытым. В таком состоянии триггер может находиться очень долго. Можно назвать его — 1-м устойчивым состоянием.

Если подать на вход закрытого каскада(2) имульс напряжения, достаточный, что бы его открыть на короткое время, то открывшись он «запрет» каскад 1, пребывающий до этого момента в открытом состоянии. Закрывшись, каскад 1 перестает запирать каскад 2, и тот так и останется открытым. Таким образом, каскады поменяются местами, триггер окажется во 2-м устойчивом состоянии.

В таком состоянии он может находиться очень долго, если не подать открывающий импульс, на закрытый каскад 1. Каскад 1 открываясь, запрет каскад 2 и триггер вернется в первоначальное состояние(1). Получается, что наш триггер имеет два устойчивых состояния и два управляющих входа, подав на которые импульсы достаточной амплитуды, можно эти состояния менять.

Из триггера с двумя входами легко можно сделать счетный триггер с одним входом. Для этого два входа объеденим с помощью двух диодов. Диоды здесь необходимы для гальванической развязки.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Когда на полученный таким образом общий вход подается открывающий импульс, происходит открывание запертого транзистора, вследствии чего происходит переключение триггера из одного устойчивого состояния в другое. Следующий импульс возвращает триггер в прежднее состояние.

У счетного триггера, также должен быть и выход. Выход можно вывести с коллектора любого из транзисторов. В итоге, получается что на каждые два импульса поступившие на вход, мы получаем один импульс на выходе. Происходит деление любого числа поступивших импульсов на два.

Двоичная система исчисления, представляется наиболее оптимальной для цифровых электронных устройств, оперирующих информацией с помощью двух состояний уровня сигнала. Высокого — соответствующего еденице, и низкого — соответствующему нолю.

Если соединить несколько счетных триггеров последовательно — получается устройство, ведущee счет в двоичном режиме исчисления(последовательный счетчик). Каждый последующий триггер, служит здесь двоичным разрядом. Разряд в двоичной системе, может иметь только два значения — 0 и 1.

Условимся, что состояние каждого триггера(0 или1)будет определятся состоянием его правого каскада. Для наглядности, пусть индикация состояний будет производиться с помощью лампочек, включенных в качестве коллекторной нагрузки.

Представим, что на вход расположенный с левой стороны поступило пять импульсов — пять едениц.

  • Первый импульс.
  • Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  • Число 1 на выходе в двоичной системе совпадает с еденицей в системе десятичной.
  • Второй импульс.
  • Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  • Число 10 на выходе — соответствует 2 в десятичной системе.
  • Третий импульс.
  • Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  • Число 11 в двоичной системе — 3 в десятичной.
  • Четвертый импульс.
  • Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  • Число 100 в двоичной системе — 4 в десятичной.
  • Пятый импульс.
  • Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
  • Число 101 в двоичной системе — 5 в десятичной.
  • Таким образом осуществляется пересчет и запоминание чисел, а так же — деление частоты.

Обозначения различных разновидностей триггеров

На электронных схемах принято графическое обозначение триггеров и других элементов логики, в виде условных прямоугольников с входами и выходами.

R — S триггеры

R — S триггер это самая простая схема, с описании ее работы как раз, и начинается эта страница. Она имеет два входа R (reset)- установки в состояние 0 и S(set) — установки в состояние 1. Выходов тоже два, но основным считается выход-Q.

Читайте также:  Дымогенератор своими руками для коптильни: пошаговая инструкция по сборке

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

D — триггеры.

Для использования триггеров в реальных счетных устройствах, необходимо иметь возможность дополнительного управления их состояниями — предустановки, обнуления, активации с помощью счетного тактового импульса. Что бы осуществить эту операцию в схему счетного триггера добавляется еще три входа.

PRESET(PR) — восстанавливает на выходе триггера состояние 1, а СLEAR(CL) — состояние 0.
С помощью тактового входа Т осуществляется общая синхронизация триггера, относительно других элементов схемы счетного устройства.

Импульс поступающий на счетный вход D меняет состояние триггера, только при наличии 1 на тактовом входе.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

J-K — триггер

Это наиболее универсальная разновидность триггера — «на все случаи жизни.» Такой триггер имеет целых два тактовых входа -J и K, прямыми входами являются PR и CLR. Так же, имеется счетный вход -CLOCK(CK) и два выхода, как и у других прочих подобных устройств.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

В настоящее время применяются электронные триггеры, в основном — в интегральном исполнении(микросхемы)

Процессы, необходимые для функционирования любых технологических устройств ( в т. ч. и ПК) можно реализовать с помощью ограниченного набора логических элементов.

Буфер

Буфер, представляет из себя усилитель тока, служащий для согласования различных логических вентилей, в особенности имеющих в своей основе разную элементную базу (ттл или КМОП).

Инвертор

Элемент, служащий для инвертирования поступающих сигналов — логическая еденица превращается в ноль, и наоборот.

Логическая схема И

И — элемент логического умножения. Еденица (высокий уровень напряжения) на выходе, появляется только в случае присутствия едениц, на обоих входах, одновременно.

Пример применения элемента И в реальном техническом устройстве: По тех. заданию, механический пресс должен срабатывать, только при одновременном нажатии двух кнопок, разнесенных на некоторое расстояние. Смысл тех.

задания заключается в том, что бы обе руки оператора были заняты на момент хода пресса, что исключило бы возможность случайного травмирования конечности.

Это может быть реализовано как раз, с помощью логического элемента И.

Логическая схема И — НЕ

И-НЕ — наиболее часто используемый элемент. Он состоит из логических вентилей И и НЕ, подключенных последовательно.

Пример применения элемента И-НЕ в реальном техническом устройстве: По тех. заданию, ход стационарной транспортной платформы, управляемой электродвигателем, должен ограничиваться, нажатием путевых конечных выключателей — правого или левого.

Как видите, применение электронных элементов логики для выполнения простейших схематических решений нецелесообразно. Более сложные, многоходовые операции — циклы, другое дело. Применение аппаратных(непрограммируемых) контроллеров на основе электронных логических элементов, в оборудовании довольно частое явление.

Логическая схема ИЛИ

ИЛИ — схема логического сложения. Логическая еденица на выходе, появляется в случае присутствия высокого уровня(еденицы) на любом из входов.

Логическая схема ИЛИ — НЕ

ИЛИ — НЕ состоит из логических элементов ИЛИ и НЕ, подключеных последовательно. Соответственно, НЕ инвертирует значения на выходе ИЛИ.

Логическая схема исключающее ИЛИ

Этот вентиль выдает на выходе логическую еденицу, если на одном из входов — еденица, а на другом, ноль. Если на входах присутствуют одинаковые значения — на выходе ноль.

Триггер Шмитта(Шмидта)

Триггер Шмитта выдает импульс правильной формы, при сигнале произвольной формы на входе. Применяется для преобразования медленно меняющихся сигналов в импульсы, с четко очерчеными краями.

  1. На главную страницу

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Источник: https://elektrikaetoprosto.ru/digit.html

Триггер Шмидта. Подробное описание нессиметричного триггера

Слово trigger, в переводе на русский, значит, спусковой крючок. Функциональность устройства заключается в быстром переходе из одного устойчивого состояния в другое под внешним воздействием.

Большинство подобных устройств имеют заданное одинаковое значение для нарастающего сигнала. Для быстрорастущих сигналов – это не проблема. Но для сигналов, которые имеют очень медленное нарастание (шумовые, например) – колебания назад и вперед из положения off в on и обратно могут вывести из строя прибор. Триггеры Шмитта применимы для медленно изменяющихся сигналов или шума.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Это решение для случаев, когда сигнал на входе колеблется вокруг заданной точки. Схема для получения петли гистерезиса – это значит, что есть два набора точек, одни на низкой стороне, другие на высокой.

Допустим, что на стороне низкого заданное значение составляет 2,0 В, а на стороне высокого – 1,5 В. Как только нарастающий входной сигнал (шум) попадает в точку 2.0 В, триггер переключит выход на 1.

И сигнал на выходе останется на 1 до тех пор, пока входной сигнал не упадёт обратно до 1,5 В. В зоне от 1,5 и 2.0 В сигнал не переключается.

Самым простым примером применения является однополюсный двухпозиционный тумблер.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Перемещением рычага вправо соединяются выступы в центре. Цифровые схемы работают на 1 и 0 (вкл. и выкл.) Серединных значений при этом нет.

Схемы триггеров Шмитта

Существует много схем, в которых необходимо включение элементов, имеющих фиксированные пороги на входе. Можно применять дискретные транзисторы, а также операционный усилитель (ОУ) с дополнительными компонентами, способствующими созданию петли гистерезиса.

На схеме изображено как устройство формирует импульс правильной конфигурации, при произвольном входном сигнале. Подобная схема применяется для преобразования медленно изменяющихся сигналов в импульсы с чётко очерченными краями. Это выполняется и на нескольких устройствах, и на одном ОУ.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Схема триггера Шмитта на транзисторах

Для несимметричного триггера характерно несколько устойчивых состояний, когда переход из одного в другое происходит лишь при пороговых уровнях. Поэтому для такого триггера характерна гистерезисная передаточная характеристика. В нижеприведённой схеме использованы биполярные транзисторы.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
На данном чертеже показано, что триггер Шмитта включает в себя транзисторы VT1 и VT2, гальванически связанные между собой посредством резистора R5. Все элементы имеют общую питающую шину. R1 и R2 обеспечивают рабочий режим транзистора VT1. Организован делитель напряжения (два резистора). Конденсатор C1 служит для ускоренного переключения. Временные диаграммы входных и выходных напряжений устройства показаны на рисунке.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
При подаче питания к устройству, он переходит в исходное состояние, когда транзистор VT1 закрыт, а VT2 открыт. В таком состоянии на выход устройства поступает некоторое напряжение Uэ, зависящее от элементов обвязки VT2. Имеются два порога срабатывания в триггере Шмитта (эта разность между напряжениями называется шириной петли гистерезиса).

Триггер Шмидта на логике

Это устройство особенное, потому что имеет по одному аналоговому входу и цифровому выходу. Самая простая схема триггера Шмитта основана на цифровых логических элементах, то есть последовательно включенных двух инверторах.

Посредством резистивной обратной связи цифровой сигнал на выходе меняет входное напряжение переключения. Скорости нарастания сигнала на выходе и входе не зависят друг от друга, являясь для данной схемы постоянной величиной (зависящей от быстродействия логических вентилей).

Схема триггера Шмитта, построенная на двух инверторах, изображена ниже.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)
Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Добавлена обратная связь, обеспеченная двумя резисторами, способствует быстрому изменению напряжения на выходе схемы при пересечении сигналом порогового напряжения. Соотношение между резисторами влияет на глубину этой связи.

Тот факт, что часть сигнала с выхода схемы поступает на вход, приводит к тому, что вместо одного порога у схемы получается два. Один из них назван порогом срабатывания схемы (когда на выходе устройства формируется уровень «1»).

Второй порог назван порогом отпускания (когда на выходе схемы формируется уровень «0»). Наличие двух порогов дало триггеру Шмитта второе название — схема с гистерезисом.

Положительная обратная связь используется для того, чтобы установить лимит для достижения точки насыщения на выходе и, таким образом, можно изменить синусоидальное напряжение в цифровое.

Как определить низкие и высокие пороговые уровни на входе схемы? Логика определения этих пороговых уровней следующая. Необходимо выбрать верхний порог, который ниже минимального высокого уровня сигнала.

Другими словами, это тот уровень, когда входной сигнал будет превышать каждый импульс на выходе. Аналогичным образом выбирается нижний порог, который соответственно выше низкого уровня сигнала. Разница между верхним и нижним уровнем является гистерезис.

Чем больше гистерезис, тем больше будет восприимчивость схемы к шуму. Также необходимо учесть влияние времени.

На изображении хорошо видны два порога там, где на вход устройства подаётся синусоидальное напряжение.

Генератор на триггере Шмитта

Для построения генераторов применяются инверторы. Посему для обеспечения устойчивых сигнальных волн нужно вывести элемент на участок между «0» и «1». Далее, требуется обеспечить положительную обратную связь посредством конденсаторов.

Ниже изображена схема простейшего генератора импульсов.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Инвертор генерирует сигнал, который заряжает и разряжает конденсатор. Это работает, потому что на выходе инверторов «0» или «1» (низкие или высокие пороговые значения). Представим, что мы смотрим на цепи в какой-то случайный момент времени.

По своей природе, триггера Шмитта на выходе инвертора или 0 В или 5 В (или переход между ними, который мы можем игнорировать). Если на выходе 0 В, а на выходе конденсатора выше, чем на выходе инвертора, конденсатор будет разряжаться через резистор до падения порогового напряжения триггера Шмитта.

Конденсатор разряжается до тех пор, пока на входе инвертора сигнал достаточно низкий. При пересечении порогового значения, цикл начнётся заново.

Ключ, который делает эту работу на «гистерезис» в триггер Шмитта. В основном это означает, что точка поездки инвертора зависит оттого, что мы идем от высокого напряжения или низкого напряжения.

Заключение

Достоинство схем заключается в том, что входное напряжение меняется незначительно, когда выходное изменяется резко к высокому или низкому пороговому значению. Процесс проводится благодаря устройству обратной связи и делителя напряжения.

В чём польза триггера Шмитта? Они весьма востребованы тогда, где на входе присутствуют шумы. Применяется для преобразования входного сигнала в прямоугольные, пренебрегая высокочастотными помехами.

Такая входная цепь осуществляет гистерезис, эффективно фильтрующий различные типы шумов.

Использование устройства будет гарантировать, что на входе цифрового устройства всегда будет либо «один» или «ноль» и ничего между ними.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Архивы

Выберите месяц
Февраль 2020  (4)
Январь 2020  (2)
Декабрь 2019  (4)
Ноябрь 2019  (3)
Октябрь 2019  (2)
Сентябрь 2019  (1)
Август 2019  (3)
Июль 2019  (5)
Июнь 2019  (7)
Май 2019  (5)
Апрель 2019  (9)
Март 2019  (13)
Февраль 2019  (11)
Январь 2019  (13)
Декабрь 2018  (11)
Ноябрь 2018  (15)
Октябрь 2018  (11)
Сентябрь 2018  (5)
Август 2018  (8)
Июль 2018  (3)
Июнь 2018  (6)
Май 2018  (3)
Апрель 2018  (3)
Март 2018  (2)
Февраль 2018  (5)
Январь 2018  (3)
Декабрь 2017  (4)
Ноябрь 2017  (6)
Октябрь 2017  (6)
Сентябрь 2017  (5)
Август 2017  (8)
Июль 2017  (11)
Июнь 2017  (8)
Май 2017  (9)
Апрель 2017  (9)
Март 2017  (5)
Февраль 2017  (15)
Январь 2017  (11)
Декабрь 2016  (13)
Ноябрь 2016  (20)
Октябрь 2016  (13)
Сентябрь 2016  (9)
Август 2016  (13)
Июль 2016  (9)
Июнь 2016  (10)
Май 2016  (13)
Апрель 2016  (11)
Март 2016  (11)
Февраль 2016  (1)
Январь 2016  (6)
Декабрь 2015  (2)
Ноябрь 2015  (4)
Октябрь 2015  (22)
Сентябрь 2015  (9)

Читайте также:  Пенополистирол экструдированный: характеристики, критерии выбора, сфера использования

Источник: https://elektronchic.ru/elektronika/trigger-shmidta.html

Основы цифровой техники

 материалы в категории

Триггер на логических элементах

Собсна гря про триггеры (в том числе и триггеры на транзисторах) уже вкратце было рассказано в отдельной статье, здесь-же немного по-подробнее и о том как сделать триггер из «подручных» базовых элементов.

Итак:

Триггер — это устройство, обладающее двумя состояниями устойчивого равновесия. Триггер еще можно назвать устройством с обратными связями. На рисунке изображена схема триггера на логических элементах ИЛИ-НЕ.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Такая схема называется асинхронным RS-триггером. Первый (сверху) выход называется прямым, второй — инверсным. Если на оба входа (R и S) подать лог. нули, то состояние выходов определить невозможно. Триггер установится как ему заблагорассудится, т. е. в произвольное состояние.

Допустим, на выходе Q присутствует лог. 1, тогда на выходе не Q (Q с инверсией) обязательно будет лог. 0. И наоборот. Чтобы установить триггер в нулевое состояние (когда на прямом выходе лог. 0, на инверсном — лог. 1) достаточно на вход R подать напряжение высокого уровня.

Если высокий уровень подать на вход S, то это переведет его в состояние 1, или как говорят, в единичное состояние (на прямом выходе лог. 1, на инверсном — лог. 0).

И в том, и в другом случаях напряжение соответствующего уровня может быть очень коротким импульсом — на грани физического быстродействия микросхемы.

То есть, триггер обладает двумя устойчивыми состояниями, причем эти состояния зависят от ранее воздействующих сигналов, что позволяет сделать следующий вывод —триггер является простейшим элементом памяти. Буквы R и S по-буржуйски set — установка, reset — сброс (предустановка). На рис. 2 RS-триггер показан в «микросхемном исполнении».

RS-триггер можно соорудить и на элементах И-НЕ, как показано на рисунке 3. Такая конструкция встречается тоже довольно часто:

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Принцип работы такой же, как у триггера на элементах ИЛИ-НЕ, за исключением инверсии управляющих сигналов, т. е. установка и сброс триггера производится не лог. 1, а лог. 0.

Другими словами, входы такого триггера инверсные. В описанных триггерах изменение состояния происходит сразу после изменения состояния на входах R и S.

Поэтому такие триггеры называются асинхронными.

Если схему асинхронного триггера немного дополнить, то получим вот такое:

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

В таком триггере вводится дополнительный вход С, называемый тактовым или синхронизирующим. Изменение состояний триггера происходит при подаче сигналов лог.

1 на входы R и S и последующим воздействием на вход С тактового (синхронизирующего) импульса. Если на тактовый вход импульс не воздействует, то состояние триггера не изменится.

Другими словами, изменение состояния триггера происходит под действием синхроимпульса, поэтому такие триггеры называются синхронными.

D-триггер

D-триггер отличается от синхронного RS-триггера тем, что у него только один информационный вход D. D-триггер показан на рисунке:

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Если на вход D подать логическую единицу, затем на вход С подать импульс, то на выходе Q (прямой выход) установится лог. 1. Если на вход D подать лог. 0, на С импульс, то на Q установится лог. 0. Т. е. D-триггер осуществляет задержку информации, поступающей на вход D. При чем эта информация хранится в D-триггере, пока не придет следующий бит (0 или 1) информации. По сути это ячейка памяти.

Если вход D замкнуть с инверсным выходом, то останется только один вход С. При подаче на вход С импульса триггер переключится, т. е. если на выходе был лог. 0, то станет лог. 1. При следующем импульсе триггер снова переключится, т. е. лог. 1 сменится лог. 0.

Таким образом, триггер осуществляет деление частоты входных импульсов на 2 (ведь уровень сигнала на выходе меняется в два раза реже). В таком режиме D-триггер называют счетнымили Т-триггером.

Этот режим (режим деления частоты) используется довольно широко.

Нетрудно заметить, что для RS-триггера (рис. 1) существует запрещенная комбинация, когда на оба входа поданы лог. 1, на его выходах также устанавливаются лог. 1 и триггер перестает выполнять свои функции (зависает).

Поэтому придумали так называемый JK-триггер. У него три входа — J, K, C. Вход J вместо R, вход К вместо S, С так и остается — синхронизацией. Если на вход J подана лог. 1, на К — лог.

0 или наоборот, то он работает как синхронный RS-триггер, если на оба входа J и К поданы лог. 1, то он работает как счетный Т-триггер.

Триггер Шмитта на логических элементах

Триггер Шмитта — это специфический вид триггера, имеющего один вход и один выход. Такой триггер Еще называют нессиметричным. В триггере Шмитта переход из одного устойчивого состояния в другое осуществляется при определенных уровнях входного напряжения, называемых пороговыми уровнями. Триггер Шмитта изображен ниже.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Если на вход триггера Шмидта подавать нарастающее напряжение (нижний график), то при некотором уровне Uп1 в момент t1 напряжение на выходе скачком переходит из состояния 0 в состояние 1. Если уменьшать напряжение на входе до некоторого напряжения Uп2 в момент t2 напряжение на выходе скачком переходит из состояния 1 в состояние 0.

Явление несовпадения уровней Uп1 и Uп2 называется гистерезисом. Соответственно, передаточная характеристика триггера Шмитта обладает гистерезисным характером. Триггер Шмитта, в отличие от других триггеров, не обладает памятью и используется для формирования прямоугольных импульсов из напряжения произвольной формы.

Примечание: основной материал взят с сайта naf-st.ru

Источник: https://radio-uchebnik.ru/txt/14-osnovy-tsifrovoj-tekhniki/82-triggery-na-logicheskikh-elementakh

Как ответить на вопрос: что это такое – триггер?

Каждый, кто интересуется электроникой, должен знать о таком устройстве, как триггер, что это такое и для чего он нужен. Со времен первых ЭВМ и по сей день, вся вычислительная техника базируется на этих несложных электронных приборах.

Благодаря использованию триггерных систем стало возможным реализовывать оперативные запоминающие устройства – быструю память для временного хранения данных, использующихся при вычислениях. Однако сфера их применения не ограничивается лишь этим.

Триггерные схемы широко используются в разработке самой разнообразной цифровой электроники, в первую очередь там, где необходимы устройства памяти: счетчики, преобразователи кода, последовательные порты, цифровые фильтры и так далее.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Изучению данной темы стоит уделить должное внимание, так как эти знания являются базовыми для работы с цифровой техникой.

Выпускники вузов, которым не знаком принцип работы триггера, не имеют шансов найти себе достойную работу по специальности.

Поэтому тем, кто интересуется электроникой всерьез, необходимо обязательно разобраться, что такое триггер, как он работает, какие бывают разновидности и где он применяется.

Общие сведения и базовые понятия

Итак, триггер – это относительно простой электронный элемент, главным свойством которого является устойчивое сохранение своего состояния в течение длительного времени. Всего существует два возможных состояния: логический 0 (ноль) либо 1 (единица).

Запись информации в триггер производится скачкообразным изменением его состояния под воздействием поступающих на входы специальных командных сигналов.

Как правило, у любого триггера есть два выхода – прямой (отображающий текущее состояние элемента) и инверсный (принимающий противоположное прямому выходу значение).

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Переходы между состояниями триггера происходят практически моментально, поэтому переходными задержками по времени на практике пренебрегают.

Объем памяти одного триггерного элемента сравнительно невелик и, как правило, составляет 1 или несколько бит, что позволяет ему хранить отдельные небольшие кодовые комбинации, сигналы и так далее. Эти устройства являются базовыми элементами, из которых формируется оперативная память.

В основе работы триггера лежит система, базирующаяся на двух и более логических элементах: И-НЕ либо ИЛИ-НЕ, которые включены по схеме с положительной обратной связью.

Триггерная схема может сохранять данные в памяти ровно до тех пор, пока присутствует питание.

При отключении питающего напряжения состояние элемента сбрасывается. Если затем снова включить ток, значение на выходе триггера может принять случайную величину – либо 0, либо 1. По этой причине при разработке цифровой схемы необходимо предусматривать момент приведения триггерных элементов в начальное состояние.

  Терморегуляторы с датчиком температуры воздуха

Триггер собранный на реле

Простейшими схемами являются RS триггеры. Буквы S и R означают английские слова set и reset – «установка» и «сброс» соответственно.

Этими буквами обозначаются два входа устройства, один из которых (S) при поступлении сигнала приводит к изменению состояния триггера, а второй (R) – сбрасывает элемент в стартовое состояние.

Анимация ниже иллюстрирует принцип работы триггерной схемы, собранной из нескольких электромагнитных реле.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)Принцип работы тригерной схемы

В начальном состоянии система находится в положении 0 (логический ноль или «FALSE»), о чем свидетельствует негорящая лампочка на прямом выходе Q. Инверсный выход, обозначаемый с черточкой наверху, соответственно, показывает уровень логической единицы (1), поэтому лампа на нем горит.

При замыкании ключа S, что символизирует подачу на вход единичного сигнала, на реле подается положительное напряжение и происходит переход триггера в логическое состояние 1 или «TRUE», соответственно, лампочка на прямом выходе загорается, а на инверсном гаснет. Затем происходит сброс системы путем замыкания ключа R, триггер переходит в стартовое состояние. Однако до того момента, как будет нажата кнопка сброса, он продолжает сохранять то состояние, в которое его привело замыкание ключа S.

Принцип работы RS триггера

Система, представленная выше, при помощи электромагнитных реле иллюстрирует работу триггера на элементах ИЛИ-НЕ.

Однако в современных схемах электромеханические приборы давным-давно не используются, сейчас они собираются из электронных логических элементов на транзисторах, заключенных внутри интегральных микросхем.

К тому же для их реализации можно использовать различные базисы. Пример схемы RS триггера на элементах И-НЕ, охваченных положительной обратной связью.

Читайте также:  Реле времени своими руками: как собрать самостоятельно

Допустим, что на оба входа R и S подаются единицы.

Если верхний элемент И-НЕ выдаст на прямой выход Q логический 0, благодаря положительной обратной связи он поступит на свободный вход нижнего элемента, вследствие чего тот выдаст на инверсном выходе единицу (1).

В свою очередь, эта 1 по обратной связи поступает на вход верхнего элемента, тем самым подтверждая 0 на выходе Q. Если же на прямом выходе изначально находится 1, то инверсный, соответственно, выдаст 0, который подтвердит 1 на выходе Q.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)Транзисторная схема RS триггера

При подаче на S-вход 0, согласно логической функции И-НЕ, на прямом выходе Q возникнет 1, а на инверсном – 0.

Если при этом на вход S снова подать 1, состояние триггера не изменится, так как по таблице истинности И-НЕ при подаче на входы элемента комбинации 0 и 1 либо 0 и 0, на выходе всегда будет 1. Таким образом, триггерная схема сохраняет полученное значение неизменным.

Сбросить значение Q обратно в 0 можно, только подав сигнал на сбрасывающий вход R. Практически работу RS триггера можно пронаблюдать, собрав такую схему на транзисторах.

Триггеры JK и D

Д триггер – неотъемлемая часть большинства микропроцессоров, так как входит в состав регистров сдвига и хранения. Они находятся в числе наиболее часто используемых схем.

Название D триггеры происходит от основной характерной особенности – образования задержки (D – Delay). У него имеется два входа: D (информационный) и C (управляющий).

Сигнал из D задает состояние схемы, но только если при этом на C есть разрешение на запись.

Если вход синхронизации C сообщает 0, это значит, что запоминание запрещено и выходной сигнал устройства никак не должен зависеть от информации, переданной на D.

Запись данных начинается только тогда, когда на C подается 1.

В этом случае состояние триггера полностью зависит от D, но если на управляющий вход снова подать 0, триггер запомнит последнее значение и перестанет реагировать на сигналы, пока синхронизация не разрешит запись.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)JK триггер

JK триггер самый универсальный и сложный из всех. Принцип работы подобен RS, однако у него нет неопределенного состояния, которое вызывается одновременной подачей на входы двух единиц. Он имеет следующие входы:

  • S – установочный;
  • R – сбрасывающий;
  • C – синхронизация;
  • J и K.

Заключение по теме

Триггерные устройства являются ключевой составляющей современных электронно-вычислительных систем. Их принцип действия рассмотрен выше, а также разобраны примеры их реализации на реле и транзисторах.

Источник: https://onlineelektrik.ru/eoborudovanie/datchyk/kak-otvetit-na-vopros-chto-eto-takoe-trigger.html

RS-триггер

Цифровая электроника

Одним из важнейших элементов цифровой техники является триггер (англ. Trigger — защёлка, спусковой крючок).

Сам триггер не является базовым элементом, так как он собирается из более простых логических схем. Семейство триггеров весьма обширно. Это триггеры: T, D, C, JK, но основой всех является самый простой RS-триггер.

Без RS триггеров невозможно было бы создание никаких вычислительных устройств от игровой приставки до суперкомпьютера.

У триггера два входа S (set) — установка и R (reset) — сброс и два выхода Q-прямой и Q— инверсный. Инверсный выход имеет сверху чёрточку.

Триггер бистабильная система, которая может находиться в одном из двух устойчивых состояний сколь угодно долго. На рисунке показан RS-триггер выполненный на элементах 2ИЛИ – НЕ.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Точно так же триггер может быть выполнен и на элементах 2И – НЕ.

Единственная разница это то, что триггер на элементах И – НЕ активируется, то есть переводится в другое состояние потенциалом логического нуля. Триггер, собранный на элементах ИЛИ – НЕ активируется логической единицей. Это определяется таблицей истинности логических элементов.

При подаче положительного потенциала на вход S мы получим на выходе Q высокий потенциал, а на выходе Q низкий потенциал. Тем самым мы записали в триггер, как в ячейку памяти, единицу.

Пока на вход R не будет подан высокий потенциал, состояние триггера не изменится.

На принципиальных схемах триггер изображается следующим образом.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Два входа R и S, два выхода прямой и инверсный и буква Т означающая триггер.

Хорошо отображает принцип работы RS-триггера несложная схема, собранная на двух элементах 2И – НЕ. Для этого используется микросхема 155ЛА3, которая содержит четыре таких элемента.

Нумерация на схеме соответствует выводам микросхемы. Напряжение питания +5V подаётся на 14 вывод, а минус подаётся на 7 вывод микросхемы.

После включения питания триггер установится в одно из двух устойчивых состояний.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Исходя из того, что сопротивление переходов транзисторов логических элементов не может быть абсолютно одинаковым, то триггер после включения питания, как правило, принимает одно и то же состояние.

Допустим, после подачи питания у нас горит верхний по схеме светодиод HL1. Можно сколько угодно нажимать кнопку SB1 ситуация не изменится, но достаточно на долю секунды замкнуть контакты кнопки SB2 как триггер поменяет своё состояние на противоположное. Горевший светодиод HL1 погаснет и загорится другой — HL2. Тем самым мы перевели триггер в другое устойчивое состояние.

На данной схеме всё достаточно условно, а на реальном триггере принято считать, что если на прямом выходе «Q» высокий уровень то триггер установлен, если уровень низкий то триггер сброшен.

Основной недостаток рассматриваемого триггера это, то, что он асинхронный. Другие более сложные схемы триггеров синхронизируются тактовыми импульсами общими для всей схемы и вырабатываемые тактовым генератором. Кроме того сложная входная логика позволяет держать триггер в установленном состоянии до тех пор пока не будет сформирован сигнал разрешения смены состояния триггера.

RS-триггер может быть и синхронным, но двух логических элементов для этого мало.

На рисунке изображена схема синхронного RS-триггера. Такой триггер может быть собран на микросхеме К155ЛА3, которая содержит как раз четыре элемента 2И – НЕ. В данной схеме переключение триггера из одного состояния в другое может быть осуществлено только в момент прихода синхроимпульса на вход «C«.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

На рассмотренной выше схеме переключение триггера осуществляется с помощью кнопок. Такой вариант используется достаточно часто и именно для кнопочного управления какой-либо аппаратурой.

В электронике существует понятие «дребезг контактов» то есть, когда мы нажимаем кнопку, на вход устройства проникает целый пакет импульсов, который может привести к серьёзным нарушениям в работе.

Использование RS-триггера позволяет избежать этого.

Благодаря своей простоте и недорогой стоимости RS-триггеры широко применяются в схемах индикации. Часто для повышения надёжности и устранения возможности случайного срабатывания RS-триггер собирается по так называемой двухступенчатой схеме. Вот схема.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Здесь можно видеть два совершенно одинаковых синхронных RS-триггера, только для второго триггера синхроимпульсы инвертируются. Первый триггер в связке называют M (master) — хозяин, а второй триггер называется S (slave) — раб.

Допустим на входе «С» высокий потенциал. М-триггер принимает информацию, но низкий потенциал на входе синхронизации S-триггера блокирует приём информации. После того как потенциал поменялся на противоположный информация из M-триггера записывается в S-триггер, но приём информации в M-триггер блокируется.

Такая двухступенчатая система намного надёжнее обычного RS-триггера. Она свободна от случайных срабатываний.

  • Для более наглядного изучения работы RS-триггера рекомендую провести эксперименты с RS-триггером.
  • Главная » Цифровая электроника » Текущая страница
  • Также Вам будет интересно узнать:
  • Базовые логические элементы.

Источник: https://go-radio.ru/rs-trigger.html

Триггер Шмитта на транзисторах

Триггер Шмитта на транзисторах, так же как и триггер Шмитта на  ОУ,  является системой двух устойчивых состояний, переход которого из одного состояния в другое связан с амплитудой запускающего импульса.

Подобные триггеры широко используются, в вычислительной технике и всевозможных промышленных приборах, где нужно менять форму сигнала, преобразовывать прямоугольные импульсы из синусоиды колебаний и регистрировать завышение сигнала определенного порога. Стандартная схема триггера Шмитта на двух биполярных транзисторах n-p-n   приводится ниже.

Для правильного уяснения работы триггера Шмитта сперва допустим, что на входе транзистора VT1 нет сигнала. Сопротивления R1, R2 и R3, подключены к минусу и плюсу питания, и создают своеобразный делитель напряжения. По отношению к эмиттеру транзистора VT2, падение напряжения на сопротивлении R3 окажется положительным, по причине этого данный транзистор будет открыт.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

От источника питания на коллектор транзистора VT2 через резистор R4 идет положительный потенциал. Когда транзистор открыт, ток эмиттера, протекающий через R4, создает на нем падение напряжения.

 Сквозь вторичную обмотку трансформатора Тр1, имеющего малое сопротивление,  потенциал на резисторе R5 оказывается между базой и эмиттером VT1 и формирует обратное смещение на переходе Б-Э. В связи с этим VT1 закрыт.

Данное устойчивое состояние схемы Шмитта является одним из двух вероятных состояний.

Вследствие падения напряжения на R4 по причине протекания через него тока, потенциал коллектора VT2 будет намного ниже напряжения питания. При поступлении на вход сигнала, он не окажет никакого воздействия на устойчивость триггера Шмитта, если его амплитуда будет меньше напряжения смещения между эмиттером и базой транзистора VT1, идущего с сопротивления R5.

В том случае если входной сигнал будет по амплитуде больше этого смещения, то произойдет открытие VT1. Из-за снижения потенциала на коллекторе VT1 снижается смещение на базе VT2, и в итоге его эмиттерный ток также снизится.

Из-за этого снизится падение напряжения на сопротивлении R5, а смещение на базе VT1 увеличится и инициирует последующий рост тока через VT1. Падение напряжения на R1 также значительно повысится, что в свою очередь уменьшит смещение на базе VT2 и снизит падения напряжения на R5. Этот алгоритм будет длиться до тех пор, пока VT1 до конца не откроется, а  транзистор VT2, не закроется.

Как только ток коллектора VT2 достигнет нуля и на сопротивлении R4  начнет падать напряжение, потенциал же на его коллекторе станет увеличиваться, который пройдя через конденсатор С2 становится выходным сигналом.

Величина и форма сигнала на выходе триггера Шмитта  находятся в прямой зависимости от постоянной времени (R4+Rн)C2 и сопротивления нагрузки Rн.

Устойчивое положение, которое отвечает закрытому транзистору VT2 и открытому VT1, является вторым состоянием триггера Шмитта, и оно длится, пока есть входной сигнал.

И как только входной сигнал пропадет, триггер Шмитта переходит в первоначальное состояние.

Если постоянная времени (R4+Rн)С2 существенно превышает продолжительность входного сигнала, то амплитуда сигнала на выходе триггера Шмитта практически оказывается стабильной, без изменений.

Источник: «200 избранных схем электроники»,  Мэндел М.

Источник: https://www.joyta.ru/4873-trigger-shmitta-na-tranzistorax/

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]