Окись азота no

Окись азота и судьба человека

Бесцветный газ — окись азота — всегда считался вредным для организма человека. Инженеры разрабатывают более совершенные двигатели внутреннего сгорания, в меньшей степени загрязняющие атмосферу окисью азота, конструируют системы регенерации окиси азота в другие вещества.

Совет

Но в конце ушедшего века ученые неожиданно обнаружили, что окись азота присутствует в любом живом организме в довольно больших концентрациях. И не просто присутствует, а управляет важнейшими физиологическими процессами.

Профессор Анатолий Федорович Ванин, впервые обнаруживший радикалы окиси азота в живых клетках, беседует с нобелевским лауреатом Робертом Форшготтом, впервые описавшим явление, обусловленное действием окиси азота. Москва, 1989 год.

Электронная формула окиси азота (NO).

Наука и жизнь // Иллюстрации

Схема физиологических воздействий окиси азота на тонус сосудов.

Окись азота (химическое название — оксид азота) — новая «путеводная звезда» в медицине, указывающая направление поиска лекарственных средств против множества болезней. Именно так считают сейчас большинство исследователей.

Лавинообразный рост числа публикаций по исследованию роли окиси азота в биологических объектах дал основание Американской ассоциации развития науки и авторитетному научному журналу «Science» («Наука») назвать в 1992 году окись азота молекулой года.

Чем же продиктован такой все возрастающий научный интерес к окиси азота?

Обратите внимание

Оказалось, что окись азота управляет как внутриклеточными, так и межклеточными процессами в живой клетке. Многие болезни — гипертония, ишемия миокарда, тромбозы, рак — вызваны нарушением физиологических процессов, которые регулирует окись азота. Именно по этой причине окись азота представляет огромный интерес для биологов и медиков самых разных специальностей.

Нейрофизиологи и нейрохимики интересуются окисью азота в связи с тем, что она управляет важнейшими процессами, происходящими в нервной системе. Высшая нервная деятельность человека во многом обусловлена прохождением импульса с одной нервной клетки (нейрона) на другую — так называемой синаптической передачей.

Если попытаться описать этот процесс в двух словах, то можно сказать, что при прохождении нервного импульса из окончания одного нейрона «выбрасывается» молекула сигнального вещества — нейромедиатора (например, ацетилхолина, глутамата), которую «захватывает» специальный белок (рецептор) на мембране нервного окончания другого нейрона. Затем сложная цепь биохимических и электрохимических реакций обеспечивает прохождение нервного импульса по этому нейрону. Когда сигнал достигает нервного окончания, снова происходит выброс из него молекулы нейромедиатора и так далее. Оказалось, что окись азота активирует процесс выброса нейромедиаторов из нервных окончаний во время синаптической передачи. Более того, молекула окиси азота сама может играть роль нейромедиатора, то есть непосредственно передавать сигнал с одной нервной клетки на другую. Неудивительно, что окись азота присутствует во всех отделах головного мозга человека: гипоталамусе, среднем мозге, коре, гиппокампе, продолговатом мозге и др.

Таким образом, в мыслительной деятельности окись азота является и непосредственным участником, и косвенным регулятором. Что касается телесного существования, то и здесь ее роль не меньшая.

Кардиологи и специалисты, изучающие систему кровообращения, интересуются окисью азота, поскольку она регулирует расслабление гладких мышц сосудов и синтез так называемых «белков теплового шока», которые «защищают» сосуды при ишемической болезни сердца.

Гематологов окись азота интересует в связи с тем, что она тормозит агрегацию (слипание) тромбоцитов, влияет на перенос кислорода эритроцитами, а также на реакции с участием химически активных молекул (свободных радикалов) в крови.

Иммунологов окись азота интересует потому, что активация клеток, участвующих в иммунном ответе, — макрофагов и нейтрофилов — сопровождается высвобождением этими клетками окиси азота.

Онкологи проявляют повышенный интерес к окиси азота из-за ее предполагаемого участия в процессе развития злокачественных образований.

Важно

Физиологи, занимающиеся проблемами регуляции водно-солевого обмена в организме, и нефрологи интересуются окисью азота по той причине, что она регулирует почечный кровоток и солевой обмен в почечных канальцах.

Даже интимная жизнь без окиси азота невозможна — ее высвобождение способствует эрекции.

Но и это еще не все. В последние годы лавинообразно нарастает поток информации о влиянии окиси азота на функционирование генома.

Судьба человека определяется его поведением и характером, на которые, в свою очередь, влияет состояние его души и тела. Значит, судьба человека в некотором смысле связана с окисью азота.

Что же представляет собой молекула окиси азота?

Известно, что, когда в электронном семействе какой-либо молекулы имеется электрон без своей пары, то есть для него нет партнера, все семейство испытывает беспокойство и проявляет повышенную агрессивность по отношению к другим соединениям, стремясь найти и отобрать чужой недостающий электрон. Соединения, имеющие неспаренный электрон, называются радикалами. Радикалы обычно неустойчивы и появляются на промежуточных стадиях химических реакций.

Окись азота из-за наличия в ее электронной структуре неспаренного электрона относится к разряду радикалов и, следовательно, как и все радикалы, стремится «найти» недостающий электрон для создания новой электронной пары.

Когда это удается сделать, образуется молекула NO_ — нитроксил-анион. Чаще же приобрести недостающий электрон, отнимая его у другой молекулы, без «войны» не удается.

В результате происходят самые разнообразные реакционные процессы, в ходе которых окись азота может претерпевать различные превращения.

Совет

Не стоит путать окись азота с закисью азота (ее химическая формула — N2O), тоже бесцветным газом со сладковатым вкусом, кратковременное вдыхание которого вызывает признаки истерии, а большие количества действуют на нервную систему возбуждающе, вызывая состояние, сходное с опьянением. В связи с этим закись азота называют «веселящим газом». Длительное вдыхание «веселящего газа» приводит к притуплению болевой чувствительности и потере сознания, благодаря чему в смеси с кислородом (80% N2о+20% О2) он иногда применяется для наркоза.

Окись азота же сама по себе таких эффектов не вызывает. Но закись азота, поступающая в определенные отделы мозга, химически разрушается там с образованием окиси азота, действие которой на нервные клетки и определяет эффекты, вызываемые вдыханием закиси. Алкоголь действует на клетки головного мозга так же опосредованно и через окись азота.

За разработку проблемы окиси азота в биологии и медицине ряд ученых удостоен Нобелевской премии по физиологии и медицине 1998 года.

Точная формулировка звучит так: «Нобелевская премия по физиологии и медицине присуждена за открытие роли оксида азота как сигнальной молекулы в сердечно-сосудистой системе».

Нобелевскими лауреатами стали американские ученые Роберт Форшготт, Ферид Мьюрэд и Луис Игнарро.

А началось все с открытия, результаты которого были опубликованы Робертом Форшготтом в 1955 году. Ученый, проводя физиологические эксперименты с кровеносными сосудами, обнаружил расслабляющее действие света на аорту кролика.

Это загадочное поведение аорты в ответ на действие света стало в дальнейшем для него и других исследователей объектом пристального внимания.

Можно считать, что оно явилось своеобразной точкой отсчета нового раздела биологической науки.

Обратите внимание

Следующий шаг был сделан в нашей стране человеком, который совершил открытие, ставшее вехой в понимании роли окиси азота в биологии и медицине. Это — профессор, доктор биологических наук Анатолий Федорович Ванин, заведующий лабораторией Института химической физики Российской академии наук.

В 1965 году журнал «Биофизика» опубликовал его небольшую, но, как позже оказалось, чрезвычайно важную статью под названием «Свободные радикалы нового типа в дрожжевых клетках». В ней говорилось, что в биологических объектах обнаружены радикалы неизвестной природы, которые никто в мире еще не наблюдал.

Наша страна тогда была «впереди планеты всей» по части создания аппаратуры для обнаружения радикалов, основанной на явлении электронного парамагнитного резонанса (ЭПР). Приборы и средства обнаружения радикалов, работающие на его основе, называются радиоспектрометрами.

Именно этими приборами и была оснащена лаборатория, где работал Анатолий Федорович, который сегодня считается одним из признанных авторитетов в области ЭПР-спектроскопии.

Явление ЭПР в 1944 году открыл профессор Казанского университета Е. К. Завойский. Суть этого явления связана со способностью радикалов, находящихся в магнитном поле, избирательно поглощать энергию радиоволн.

Неизвестная радикальная субстанция сначала была обнаружена в культурах дрожжей, а затем и в клетках животного происхождения. Стало понятным, что открыто новое вещество, которое присутствует во всех живых клетках.

Работы Форшготта и Ванина застолбили новое научное направление. Сейчас ученым понятно, что открытые Анатолием Федоровичем неизвестные радикалы не что иное, как молекулы окиси азота.

Но в то время предстояло еще выполнить немало сложнейших исследований, чтобы узнать, какие именно радикалы подают необычный ЭПР-сигнал. Одно было ясно уже тогда: науке эти радикалы неизвестны. Годы напряженного труда позволили Ванину сделать второе открытие.

Важно

Он доказал, что сигналы подает окись азота, причем не одна, а в комплексе с ионами железа и белками, содержащими сульфгидрильные группы. Теперь их называют «динитрозильные комплексы».

Какова роль комплекса окиси азота и белка в живой клетке? На этом вопросе и сконцентрировалось внимание Ванина и других исследователей, подключившихся к изучению проблемы.

Между тем Р. Форшготт продолжал изучать природу открытого им явления.

В 1961 году он опубликовал обзорную статью, в которой еще раз осветил вопрос о расслабляющем действии видимого света на кровеносные сосуды.

Результатом исследований, продолжавшихся четверть века, явилось открытие Форшготтом в 1980 году неизвестного физиологически активного вещества — эндотелиального фактора расслабления сосудов (EDRF).

Форшготт обнаружил, что ацетилхолин, являющийся одним из медиаторов нервной системы, обычно вызывал сжатие кровеносных сосудов, но в некоторых опытах он их почему-то расслаблял.

Анализируя эти эксперименты, Форшготт обратил внимание, что расслабляющее действие ацетилхолина на сосуды наблюдалось только в тех случаях, когда они были плохо очищены от эндотелиальных клеток, выстилающих внутреннюю поверхность сосудов.

Форшготт догадался, что именно присутствие эндотелия меняло физиологический эффект ацетилхолина на противоположный. После проведения серии остроумных опытов сомнений не оставалось: сделано открытие. Так и был обнаружен эндотелиальный фактор расслабления сосудов (EDRF).

Это научное достижение приобрело широкий общественный резонанс и взбудоражило весь ученый мир. Большинство ученых сразу поняли, насколько оно важно для физиологии, патофизиологии и практической медицины.

Совет

В 1991 году Форшготт публикует целую серию статей, в которых он обосновывает утверждение, что EDRF — это не что иное, как молекула окиси азота. То есть, под действием ацетилхолина происходит выброс окиси азота из эндотелия кровеносных сосудов, которая затем поступает в слой мышечных клеток.

И именно молекула окиси азота оказывает расслабляющее действие на стенки сосудов.

А что же происходит под действием света? Почему он тоже вызывает сосудистую релаксацию? Видимо, под действием светового излучения высвобождается та же самая окись азота, которая (как показал Ванин) существует в виде динитрозильного комплекса с белками.

Как ученый-физиолог, Форшготт в своих научных исследованиях шел от явлений (физиологии) к их механизмам. Это путь от сложного к простому.

Для Ванина, как биофизика и биохимика, путь от простого к сложному, от факта к его роли и значению был более естественным.

Ванин и начал с того, что открыл существование радикальной субстанции в живых объектах и стал изучать, что это за молекула и какие функции она выполняет.

Форшготт первым в мире описал явление, обусловленное действием окиси азота, — релаксацию кровеносных сосудов. Ванин открыл наличие неизвестной субстанции в живой материи. В своих дальнейших исследованиях они шли навстречу друг другу, быстро сближаясь. Ими как бы были поставлены две вехи, между которыми пролегла невидимая связующая нить.

Результаты исследований не заставили себя ждать. Уже вскоре обозначена еще одна важная веха. Ее поставил американский ученый Ферид Мьюрэд, после того как в середине 70-х годов он сделал важное открытие, касающееся гуанилатциклазы.

Гуанилатциклаза — один из ключевых ферментов, управляющих жизнью клетки. Мьюрэд показал, что гуанилатциклаза активируется при действии нитро- и нитрозосоединений.

Обратите внимание

Мьюрэд высказывает идею, что действующим активным началом этих соединений являются не они сами, а окись азота, выделяемая из них, и экспериментально ее подтверждает.

В это же время Ванин изучает биологическое действие динитрозильных комплексов железа и показывает, что они обладают мощным гипотензивным действием — расслабляют кровеносные сосуды.

Ванин также предложил метод обнаружения окиси азота в органах и тканях, получивший широкое распространение. Следующий шаг его в научном поиске не менее важен. Он первым приходит к убеждению и обосновывает, что EDRF имеет прямое отношение к окиси азота.

Когда авторы открытий буквально наступают друг другу на пятки, дышат в затылок в гонке за приоритетом, обычно учитывается, чьи результаты раньше увидели свет.

Ванин, получив данные, что EDRF имеет отношение к окиси азота, в 1985 году решил их опубликовать в журнале «Бюллетень экспериментальной биологии и медицины», но напечатана статья была только через три года после подачи. Тут начал расти вал публикаций на эту тему в зарубежных изданиях.

Такие же данные в 1986 году получили Форшготт и Игнарро, а в 1987 году — Сальвадор Монкада. Последний убедительно показал, что в состав EDRF входит окись азота, и немедленно опубликовал свои данные в международном научном журнале «Nature» («Природа») . Все эти публикации вышли в свет раньше, чем оригинальная статья Анатолия Федоровича.

Форшготт и Ванин, пройдя каждый свою половину пути, встретились в 1989 году во Всесоюзном кардиологическом научном центре в Москве. О чем они говорили тогда, понятно: конечно же, о научных планах, своих невероятных догадках и сомнениях. Их общение продолжилось в Лондоне на 1-й конференции по биологической роли оксида азота и в последующей переписке.

Авторитет Ванина как основоположника нового научного направления общепризнан. Но вот парадокс: главная научная награда — Нобелевская премия обошла его стороной. Незаслуженно — это не то слово. Видимо, выбор Нобелевского комитета не всегда основывается на научной значимости работ.

Важно

Величие Анатолия Федоровича в том, что он не стал оспаривать решение комитета. А мы знаем, что такие гении, как Ньютон и Лейбниц, оспаривали друг у друга научные приоритеты. И это при том, что о Ньютоне говорили как о единственном смертном, вставшем вровень с богами. Да и Лейбниц за заслуги перед человечеством также вполне может быть приравнен к ним.

Читайте также:  Плюсы и минусы увлажнителя воздуха для ребенка: стоит ли использовать и почему

Так что даже боги не всегда могут поделить между собой пальму первенства.

Но и исследователи, которым присудили Нобелевскую премию (напомним, что это Форшготт, Мьюрэд и Игнарро), — воистину великие ученые и, вне всякого сомнения, заслужили столь высокое признание. Тем не менее можно констатировать, что одно из главных действующих лиц в истории про окись азота просто вычеркнули из списков.

Возможно, с историей открытия действия окиси азота кто-то будет и не во всем согласен — неудивительно: логика исследований и роль каждого из ведущих ученых, разрабатывавших эту тему, может видеться всем по-разному. Но вряд ли кто усомнится и будет оспаривать, что все началось с основополагающих открытий Форшготта и Ванина. Именно они были пионерами в установлении всеобъемлющей роли окиси азота в живой природе.

Где же те весы, на которых можно было бы объективно взвесить признание заслуг ученого, чтобы справедливо воздать ему за них?

Детальное описание иллюстрации

Источник: https://www.nkj.ru/archive/articles/6410/

Оксид азота

Оксид азота – химическое соединение группы окисей азота, в котором азот присутствует во II степени окисления. Он имеет один непарный радикальный электрон, следовательно, является нестабильным, имеет высокую реакционную способность и обладает свойствами свободного радикала.

Оксид азота или окись азота, а также известный как монооксид азота представляет собой молекулу с химической формулой NO. Это свободные радикалы, которые является важным промежуточным продуктом химических реакций.

В организмах млекопитающих и человека оксид азота является важной составляющей клеточных сигнальных молекул, участвующих во многих физиологических и патологических процессах. Это мощный вазодилататор с коротким, в несколько секунд, периодом полураспада в крови.

В конце 80-х годов было доказано, что особые ферментные системы организмов способны синтезировать газ оксида азота. Это происходит в результате окисления гуанидиновой группы аминокислоты L-аргинина с одновременным синтезом цитруллина.

Получение оксида азота

В лабораторных условиях получение оксида азота возможно путем проведения реакции разбавленной азотной кислоты с медью или восстановлением азотистой кислоты в виде нитрита натрия или нитрита калия.

Основным природным источником оксида азота являются электрические разряды молний в грозу. Оксид азота является побочным продуктом, возникающим при сгорании веществ в автомобильных двигателях и топлива на электростанциях.

Также получение оксида азота возможно из свободных элементов, для этого необходимо при температуре 1200-1300°C провести соединение азота с кислородом.

Применение оксида азота

Оксид азота используется в медицине для расширения кровеносных сосудов при ишемической болезни сердца путем уменьшения нагрузки на сердце.

Оксид азота используется при неотложной помощи для содействия капиллярному расширению легких для лечения первичной легочной гипертензии у новорожденных, связанной с врожденными дефектами. Терапия оксидом азота значительно повышает качество жизни и, в некоторых случаях, спасает жизнь детей с риском развития заболевания сосудов легких.

Совет

Оксид азота также вводится в виде спасительной терапии у больных с острой правожелудочковой недостаточностью, которая является вторичной по отношению к легочной эмболии.

В пищевой промышленности оксид азота известен под названием пищевая добавка Е942 и используется в качестве пропеллента и упаковочного газа.

Свойства оксида азота

Оксид азота – это бесцветный газ с температурой плавления -163,6°С и температурой кипения -151,7°С. Молекулярная формула оксида азота – NO, молярная масса – 30.01 грамм/моль, плотность – 1,3402 г дм, растворимость в воде – 74 см3/дм3, показатель преломления – 1.0002697.

Польза оксида азота

Оксид азота широко применяется в традиционной медицине при различных заболеваниях и оказывает положительное влияние на:

  • Систему кровообращения – регуляторные свойства оксида азота оказывают влияние на циркуляцию крови по всему телу, увеличивают диаметр кровеносных сосудов и предотвращают образование тромбов. Он помогает эндотелиальным клеткам контролировать кровеносные сосуды. Оксид азота также повышает уровень кислорода внутри тела, понижает уровень артериального давления и помогает в оптимальном режиме функционировать сердцу;
  • Иммунную систему – иммунные клетки в организме человека синтезируют оксид азота, чтобы уничтожать бактерии и вирусы, способные вызывать инфекции. Известно также свойство оксида азота предотвращать появление доброкачественных и злокачественных опухолей в клетках организма;
  • Уровень выносливости — оксид азота повышает уровень выносливости мышечных клеток, что позволяет выдерживать более тяжелые нагрузки и с легкостью вести более активную деятельность;
  • Повышение реакции нервных клеток – оксид азота действует как внутриклеточный посредник между различными клетками в организме, в том числе, нервными клетками. При достаточном содержании оксида азота в организме связь между нервными клетками становится быстрее, что приводит к быстроте реакции на внешние раздражители, увеличению фокуса и бдительности;
  • Повышение сексуальной энергии – применение оксида азота стимулирует, бодрит и усиливает сексуальные механизмы реагирования в организме. Сенсорные и психические стимуляции, вызываемые нервными клетками под действием оксида азота, приводят к расслаблению мышц и притоку крови к пенису, благодаря чему происходит эрекция. Таким же образом процесс протекает и в женском организме, под действием оксида азота приток крови увеличивается в тканях влагалища;
  • Облегчение боли – оксид азота обеспечивает долгосрочное облегчение от боли, связанной с артритом и воспалением суставов. Он способен активировать противовоспалительные механизмы в клетках организма, и способствует уменьшению воспаления;
  • Увеличение мышечной массы – добавки содержащие оксид азота расширяют кровеносные каналы, улучшают кровообращение и увеличивают мышечную массу. При увеличении потока крови увеличивается количество питательных веществ в мышцах, что приводит к увеличению их размера;
  • Внутриклеточные связи – оксид азота улучшает процесс связи между различными клетками в организме, в том числе, между нервными клетками и клетками мозга. Применение добавок содержащих оксид азота приводит к улучшению памяти, повышению уровня концентрации и способности к обучению.

Вред оксида азота

Применение оксида азота у большинства людей не вызывает побочных эффектов, однако, в случаях передозировки он приводит к диарее, слабости, тошноте, головной боли, учащению пульса и сердцебиения, задержкам воды, усталости, раздражениям на коже и сухости во рту.

Также побочными эффектами применения оксида азота являются проблемы с дыханием, сильная аллергия или сыпь, крапивница, зуд, одышка, опасные для жизни осложнения астмы, внезапный озноб, потливость, тремор, рвота и обмороки. В некоторых случаях применение оксида азота приводит к вспышкам герпеса, расширению сосудов и кровотечениям.

Источник: https://www.neboleem.net/oksid-azota.php

Оксид азота (II)

Оксид азота (II), оксид (II) оксид, окись азота — неорганическое соединение состава NO. При обычных условиях является бесцветным, токсичным и негорючей газом. В жидком и твердом состояниях соединение димеризуеться с образованием оксида N 2 O 2.

Монооксид азота относится к несолетвирних оксидов: с водой он не образует кислоту или основание, а непосредственно реагируя с основами и с кислотами, не образует солей.

Физические свойства

Оксид азота NO при обычных условиях является бесцветным газом с очень низкой температурой кипения (-151,8 ° С) и температурой плавления (-163,6 ° С). В твердом состоянии, благодаря наличию неспаренного электрона, соединение полностью димеризуеться с образованием оксида N 2 O 2, а в жидком — примерно на четверть.

В воде растворяется трудно: при обычной температуре лишь около 5 см³ в 100 г воды.

Получение

Промышленный метод

В промышленных масштабах синтез оксида азота (II) является одной из стадий в получении азотной кислоты. Его получают окислением аммиака кислородом воздуха в присутствии катализаторов:

Количество преобразованного в NO аммиака составляет примерно 93-98%. Другими, побочными, реакциями является образование азота и оксида азота (I):

Кроме этого, может происходить частичное разложение конечного продукта, NO, а также его взаимодействие с аммиаком:

Согласно одной из самых распространенных теорий механизма окисления, предложенной Максом Боденштейном, аммиак окисляется атомарным кислородом, адсорбированным на катализаторе с образованием гидроксиламина, который постепенно разлагается с образованием NO:

Основными применяемыми катализаторами являются платина и, в меньшей степени, родий и палладий. Несмотря на их высокую стоимость, они имеют преимущество в высшем выходе реакции и меньшей склонности к отравлению.

Лабораторные методы

В лабораториях монооксид азота обычно добывают взаимодействием разбавленной азотной кислоты с медью при некотором нагревании по реакции:

Применяются также реакции восстановления нитритов в разведенной серной кислоте:

Полученный такими методами NO может быть загрязнен примесями (прежде всего, N 2 O), поэтому он требует дополнительной очистки.

Химические свойства

Наиболее характерной свойством монооксида азота является его способность легко сочетаться при обычных условиях с кислородом воздуха с образованием диоксида азота (реакция имеет большое значение при производстве азотной кислоты):

При высокотемпературном нагреве и в присутствии катализатора BaO, газообразные NO разлагается на простые соединения. Жидкий NO с течением времени может диспропорционуваты с образованием оксидов азота (I) и азота (III):

При взаимодействии с галогенами или серной кислотой (в присутствии кислорода), NO окисляется с образованием соединений нитрозила:

Обратите внимание

Аналогично он образует нитрозильни комплексы с металлами в водных растворах солей:

Оксид азота восстанавливается до свободного азота графитом, красным фосфором, неметаллическими соединениями-восстановителями, а также некоторыми металлами:

Роль в живых организмах

Роль оксида азота (II) как сигнальной молекулы в живых организмах была открыта в 1980-х годах, а в 1998 Роберт Ферчготт, Луис Игнарро и Ферид Мурад получили Нобелевскую премию по физиологии или медицине за выяснение его функций в сердечно-сосудистой системе.

Монооксид азота является паракринным фактором благодаря своей способности быстро диффундировать через мембраны клеток, однако из-за высокой реакционность расстояние такой диффузии ограничена 1 мм а время полжизни молекул NO составляет 5-10 секунд.

Азот мооноксид выполняет сигнальную функцию как у животных, так и у растений, даже некоторые бактерии могут чувствовать очень небольшие его концентрации и двигаться в сторону от источника этого соединения.

У млекопитающих NO задействован в ряде физиологических процессов, таких как регуляция артериального давления, передача нервных импульсов, свертывания крови и иммунный ответ.

Синтез оксида азота (II) осуществляется путем деаминирование аминокислоты аргинина и обеспечивается ферментом NO-синтазы (NOS), что у млекопитающих трех изоформы: нейрональная (nNOS), индуцибельной (iNOS) и эндотелиальной (eNOS). nNOS и eNOS экспрессируются в соответствующих типах клеток конститутивно и резко увеличивают свою активность в ответ на рост концентрации Ca 2+.

Зато активация iNOS осуществляется на уровне транскрипции под влиянием эндотоксинов или цитокинов воспаления, в частности в таких клетках как макрофаги и нейтрофилы, и не зависит от цитоплазматического уровня кальция.

Одной из мишеней монооксида азота в клетках млекопитающих, в том числе и гладких мышцах, является фермент гуанилатциклазы, в активном центре которого он присоединяется к атому железа и таким образом увеличивает энзиматическую активность. Циклический ГМФ, что является продуктом гуанилатциклазы, является вторичным посредником и запускает в клетке каскад реакций, обеспечивающих физиологическую ответ, в случае гладких мышц — их расслабление.

NO может действовать также и цГМФ-независимым путем, например изменять активность белков путем ковалентной нитрозилювання тиольных групп (-SH) специфических остатков цистеина в их составе.

Защитная функция монооксида азота

У растений NO участвует в защитных реакциях во время повреждений и инфекций. Также монооксид азота играет роль в функционировании иммунной системы животных.

Активированные макрофаги и нейрофилов (а также клетки эндотелия) производят его в больших количествах во время воспалительных процессов.

Вместе с NO они выделяют супероксид-он (O-2), эти два соединения соединяясь образуют очень токсичен пероксинитрит (OONO -) нужен для того, чтобы убить поглощены бактерии.

Медицинские препараты, влияющие на сигналювання NO

Из препаратов, влияющих на сигнальный путь монооксида азота, первым начал использоваться еще в XIX веке нитроглицерин для борьбы со стенокардией. Это соединение медленно расщепляется в организме и действует как источник NO длительное время.

NO в свою очередь обеспечивает расширение сосудов и уменьшения нагрузки на сердце. Такое действие нитроглицерина была открыта благодаря наблюдению, что больные стенокардией работники фабрик, на которых изготавливали это соединение, сильнее страдали от боли на выходных.

Врачи настолько часто слышали такие сообщения пациентов, обратили внимание на терапевтический эффект нитроглицерина. С тех пор было разработано много других нитровазодиляторив.

Сам NO не имеет терапевтического действия при стенокрадии, через очень небольшое время полжизни, однако его иногда используют в вдыхаемой форме для облегчения легочной гипертензии.

Важно

Существуют также препараты, имеющие другие мишени в сигнальном пути NO. Например, силденафил подавляет деятельность фосфодиэстеразы, которая расщепляет цГМФ, таким образом продолжая продолжительность действия сигнала.

Это соединение была впервые предложена для лечения стенокрадии, однако выяснилось, что она наиболее эффективно влияет на изоформу цГМФ-фосфодиэстеразы, експресуетсья в сосудах пениса, и вызывает их расширение и, соответственно, эрекцию.

Поэтому силденафил (под названием Виагра) стал использоваться для лечения эректильной дисфункции.

Токсичность

Оксид NO раздражает дыхательные пути и глаза. Симптомы отравления зьявляють только через определенный период задержки в несколько часов. Ими являются: раздражение горла, затрудненное дыхание, головная боль, тошнота. Дальнейшие осложнения при отсутствии лечебных мероприятий могут вызывать полную потерю сил, непостоянство дыхания, цианоз, а также смерть в результате отека легких.

Пораженного NO необходимо убрать из опасной территории, провентилировать легкие кислородом. Дальнейшие 72 часа необходимо обеспечить надзор и исключить любую физическую деятельность, поскольку это может привести к развитию отека легких. При попадании вещества в ое или на кожу, необходимо тщательно промыть пораженное место теплой водой и обратиться к врачу.

Читайте также:  Срок службы газовой плиты в квартире: нормы по ГОСТу и реальный срок эксплуатации

Мерами безопасности при работе с оксидом азота (I) является наличие защитных резиновых (тефлоновых) перчаток, герметичных очков, респиратора.

Источник: https://info-farm.ru/alphabet_index/o/oksid-azota-ii.html

Оксид азота! ОБМАН или реально работает?

Считаю необходимым периодически рассматривать некоторые рабочие или не рабочие, по моему мнению, спортивные добавки. Маркетинг – штука тонкая и может заставить неосведомлённых людей купить даже муку в красивой банке за баснословные деньги. Сегодня мы разберёмся с оксидом азота. Поехали, друзья!

Привет, друзья! Оксид азота – довольно интересное вещество. Это газ, который образуется в нашем организме и участвует во множестве, очень важных для качка, физиологических процессов.

Сейчас особенно распространена реклама в спортивной индустрии, где огромные накачанные атлеты глотают черпаки предтренировочных комплексов из чёрных, красных и других пластиковых банок, при этом уверяя, что это даст людям невероятную мышечную массу. Что же, нужно разобраться, так ли это.

Что такое оксид азота (NO)?

Как я упоминал выше, оксид азота – это газ, который расширяет сосуды артериального русла и регулирует артериальное давление.

Из-за расширения сосудов усиливается приток крови к мышцам, а это облегчает поступление и усвоение питательных веществ, а так же способствует синтезу белка после тренировки.

Как образуется NO в нашем организме?

Оксид азота образуется благодаря донаторам (от англ. «даритель») азота, в число которых входит условно незаменимая аминокислота – АРГИНИН. Практически все остальные донаторы азота содержат в себе аргинин.

Всё проще, чем кажется. Аргинин доставляет азот (N) в систему ферментов (энзимов), а они, в свою очередь, производят оксид азота (NO).

Как оксид азота влияет на рост мышц?

На рост мышц он влияет напрямую. При недостаточном количестве аргинина (донатора азота) будет наблюдаться низкая активность ферментов (энзимов). Это приведёт к повышению артериального давления, которое снизит синтез белка! Т.е. по сути NO является АНАБОЛИЧЕСКИМ ФАКТОРОМ РОСТА МЫШЕЧНОЙ ТКАНИ.

Скажу ещё пару слов по этому поводу. Как мы все знаем анаболические гормоны (тестостерон, соматотропин, инсулин и др.) играют ключевую роль в наборе мышечной массы. Так же есть такая штука, как инсулиноподобный фактор роста (IGF-1) – это основной посредник действия гормона роста (соматотропина).

Фишка в том, что было установлено, что хоть силовые тренировки и способствуют выработке IGF-1, но без должного количества оксида азота эффект от гормона роста минимален!

Я вас там не запутал? Ок. Давайте объясню ещё раз, для сутулых.

Как видите, всё не так сложно.

ВНИМАНИЕ: Замечено, что чем больше вы тренируете ваши мышцы, тем больше они производят оксида азота (NO). Больше бездельничаете, меньше NO в ваших мышцах.

Причины снижения уровня NO (оксида азота)

Думаю, что теперь понятно, что для хорошего роста мышечной массы нужна достаточная для роста концентрация NO. А что влияет на понижение уровня оксида азота в организме?

  • Болезнь;
  • Перетренированность;
  • Большой возраст;
  • Кортизол (гормон стресса);

На самом деле причин гораздо больше! Но я, на мой взгляд, перечислил основные. Вот почему я советую тренироваться «натуралу» (тренирующемуся без фарм. поддержки) не более 45-60 минут, об этом я писал здесь. Для того, чтобы снизить уровень кортизола, который препятствует выработке NO.

Повышение уровня NO

Ок, а как повысить концентрацию NO? Тут всё очевидно,  НУЖНЫ ДОНАТОРЫ АЗОТА. И сразу же на ум приходит АРГИНИН, ведь в большинстве донаторов встречается именно он.

Так же считается, что аргинин способствует увеличению мышечной массы и сокращению жировых отложений при оптимальной нагрузке.

Т.е. всё вроде бы понятно. Хочешь увеличить концентрацию оксида азота – кушай аргинин! Не торопитесь, друзья. Тут как раз мы с вами наблюдаем маркетинг во всей своей красе.

Почему аргинин?

Ребят, дело в том, что в Соединённых штатах учёные искали вещество, которое отвечает за поддержание работы кровеносных сосудов и кровеносной системы человека.

Через какое-то время они нашли это вещество и поскольку решили, что это обычная молекула белка назвали его EDRF (фактор расслабляющий эндотелий). Но через небольшой промежуток времени они были очень удивлены, что найденная молекула оказалась ОЧЕНЬ ХИМИЧЕСКИ-АКТИВНЫМ ГАЗОМ или донатором азота.

В течение 10 лет было опубликовано более 60000 статей на эту тему, а учёные, сделавшие это открытие были удостоены Нобелевской премии в 1998 г. Как вы поняли, эта молекула оказалась аргинином.

Позже, это открытие помогло многим больным гипертонией (т.к. аргинин расслабляет сосуды), а так же тем, кто имел проблемы с желудочно-кишечным трактом в качестве вещества, которое стимулирует (поддерживает) иммунитет.

Но медицина медициной друзья. Что насчёт бодибилдинга? Несколько исследований показали, что аргинин вызывает КРАТКОВРЕМЕННОЕ расширение сосудов! Т.е. аргинин даже если и увеличивает выработку оксида азота, то на небольшой промежуток времени! Поэтому его польза в бодибилдинге весьма сомнительна.

Дак что же донаторы азота, увеличивающие содержание NO в крови – это всё один глобальный обман? Не спешите с выводами, друзья. Просто нужны БОЛЕЕ МОЩНЫЕ ДОНАТОРЫ АЗОТА!

Мощные донаторы азота

Нужно сказать, что на данный момент во всех спортивных добавках и на всех цветастых баночках спортивного питания, где вы найдёте заветные буквы «NO» используются малоэффективные компоненты.

Решение нужно искать в медицине, где давно уже используются препараты, которые по сравнению с аргинином гораздо сильнее способствуют выработке оксида азота в крови.

Эти препараты относятся к классу НИТРАТЫ и самые известные из них:

  1. Изосорбид (нитросорбид).
  2. Нитроглицерин;

Изосорбид или, если быть точным, ИЗОСОРБИДА ДИНИТРАТ имеет более длительный период действия, однако дозировка должна быть снижена как минимум в 1,5-2 раза из-за того, что при употреблении рекомендованной терапевтической дозировки могут быть побочные эффекты: учащённое сердцебиение, головная боль, артериальная гипотензия (снижение артериального давления), пульсация сосудов и т.д. Правда переживать не стоит. Все эти побочные эффекты связаны с увеличением концентрации оксида азота в крови, поэтому стоит просто уменьшить дозировку.

Практика применения

Думаю, что многих заинтересует именно практическая сторона вопроса. Как закидывать? Сколько шарашить? И другие важные вопросы.

  1. Принимайте NO на голодный желудок.
  2. Если ваш вес более 100 кг, то можно сразу начать с удвоенной дозировки (в среднем 2 черпака).
  3. Через две недели можно увеличивать дозировку вдвое (для всех).
  4. Общая продолжительность применения NO в среднем не должна превышать одного месяца.

Ощущения от применения

  • Мышечную массу на самом деле они не увеличили, а вот рост силы был довольно заметен.
  • Дикое повышение выносливости, настроения, двигательной активности.
  • Метаболизм в мышцах вырос. Это я отметил из-за улучшенного процесса сжигания жира.
  • Излишняя возбудимость. Я тренируюсь в вечернее время, и при увеличении дозировки иногда бывает сложно уснуть ночью.
  • Улучшенная эрекция >:D Приятный бонус, безусловно. Кстати, у женщин так же наблюдается улучшенное кровенаполнение половых органов.
  • Более сбалансированное питание. Т.к. сложно получить все необходимые нутриенты в нужных пропорциях из обычной пищи.

Так же есть и такие моменты, которые часто заявлены производителями, но я ИХ НЕ ОЩУТИЛ:

  • Повышенного «зарастания» повреждённых тканей не было! Всё заживает как обычно.
  • Никакие, на фиг, шлаки не выводятся. Об этом частенько пишут производители, но ребят, уверяю вас, что в медицине ВООБЩЕ НЕТ такого термина, как шлаки! Это просто очередной шарлатанский трюк.

Так же есть те, кому эту добавку я бы НЕ СОВЕТОВАЛ применять вообще:

  • Не применять детям. Иногда на банке с надписью «NO» можно увидеть, что для роста детям помогает данная добавка. Друзья, дети и так растут на глазах и если помогать их росту, то уж точно не оксидом азота.
  • Не применять людям с вегетососудистой дистонией. Приводить в норму кровяное давление нужно специальными лекарственными препаратами, а не донаторами азота.

Что использовал

Мне удалось попробовать несколько довольно не плохих предтренировочных комплексов, способствующих выработке NO.

NO Explode от BSN – не плохая штука. Однозначно становишься активнее, наблюдается увеличение силы, выносливости, не плохой пампинг (кровенаполнение). Всё это скорее результат действия кофеина, таурина и растительного экстракта барвинка малого. С огромной скидкой можете купить в этом магазине.

Niox от Nutrex Research Labs – ощущал сильный всплеск энергии, приятные покалывания кожи, становится тепло (прилив тепла) всем конечностям, хорошо наполняет мышцы кровью. Во время применения были тренировки, когда попросту «не мог устать» и заставлял себя уходить из зала. Хорошая штука, мне понравилась. Дешевле всего сейчас можно купить по этой ссылке.

“Плазменная струя” от Gaspari – весь кайф от азотной накачки наблюдается, так же прилив силушки богатырской, активность и полёт нормальные. Купить можно тут.

Выводы

В статье было много информации, а так же не очень простых терминов, поэтому вместо того, чтобы размазывать сопли по подушке, я думаю, что стоит подытожить всё вышесказанное:

Надо понимать, что добавки повышающие уровень оксида азота в крови не панацея накачки мышечной массы.

И если стоит выбор между покупкой банки предтреника, который по словам производителя просто переполнит вас NO или обычной пищи на неделю, то я бы лучше прикупил творожка, орехов, рыбы, мяса, гречки, сыра, молока, кефира и т.д. Так как они так же являются донаторами азота. Как всегда, правда, где-то посередине.

На сегодня у меня всё, друзья.

Источник: https://snow-motion.ru/pitanie/sportivnoe-pitanie/oksid-azota.html

Просто скажи NO. Поговорим про оксид азота (NO)

Переизбыток оксида азота может быть причиной глаукомы и, возможно, других патологических состояний: как решить эту проблему естественным способом.

В последнее время в прессе появлялось много материалов, посвященных сделанному открытию, которое заключалось в следующем: у многих людей, страдающих хронической открытоугольной глаукомой, чрезвычайно повышен уровень оксида азота (Neufeld 97).

Снижая этот уровень медикаментозно, исследователям удавалось снизить ущерб, наносимый зрительному нерву повышенным внутриглазным давлением у крыс (Neufeld 99).

Совет

Сегодня, благодаря усилиям фармацевтических компаний, наблюдается повышенный спрос на блокирующие оксид азота препараты, одобренные для лечения ХОГ.

Однако, кажется, что мало кто интересуется выяснением в первую очередь истинных причин повышения его уровня до столь высоких значений.

Учитывая, что искусственное подавление любых естественных физиологических реакций организма не может не иметь непредвиденных последствий, может быть, вместо такого вмешательства имело бы смысл выяснить причину и устранить её?

Оксид азота: краткое описание

Исчерпывающей информации об этом нейромедиаторе до сих пор нет, поскольку впервые он был обнаружен лишь в 1987 г. (Ignarro, 1987), благодаря чему в 1989 г. авторы труда стали лауреатами Нобелевской премии заслуги в области естественных наук.

Оксид азота вырабатывается из L-аргинина в разных частях тела.

Он выполняет множество функций, например:

  • индуцирует вазодилатацию;
  • контролирует интрагастральное давление;
  • способствует дилатации матки во время беременности;
  • замедляет резорбцию костей;
  • играет важнейшую роль в возникновении и поддержании эрекции;
  • а также уничтожает бактерии, грибки и даже опухолевые клетки.

Однако высокие его уровни также и чрезвычайно опасны, поскольку оксид азота является мощным азотным свободным радикалом. На самом деле, он способен убивать нейроны, а также считается, что он повинен в большинстве дегенеративных процессов, которые имеют место после инсультов и при некоторых заболеваниях нервной системы.

Каковы потенциальные причины повышения уровня оксида азота?

Основываясь на имеющихся знаниях и данных доступных исследований, можно выделить несколько факторов, которые могут служить причиной или вносить свой вклад в повышение уровня оксида азота:

  • аллергии (гистамин);
  • низкий статус железа;
  • гипоксия (дефицит кислорода);
  • отравление угарным газом;
  • чрезмерно высокий уровень эстрогена, или «доминирование эстрогена»;
  • прочее.

Аллергии

Каким образом аллергия может повысить уровень оксида азота? Ответ довольно прост.

Общеизвестно, что аллергии служат причиной повышения уровня гистамина, вот почему так популярны антигистаминные лекарственные средства.

А вот что известно не так широко, так это то, что гистамин, в свою очередь, стимулирует высвобождение оксида азота из различных клеток тела (Mannaioni 97a, Mannaioni 97b, Champion 98).

Предполагается даже, что в некоторых неблагоприятных эффектах гистамина, таких как повышение проницаемости гематоэнцефалитического барьера, посредником, на самом деле, выступает оксид азота (Mayhan 96).

Поэтому решение проблемы аллергии, вызывающей повышение уровня гистамина, может снять необходимость медикаментозного снижения уровня оксида азота.

Кроме того, высокий уровень гистамина связывают с циркуляторной гипоксией, состоянием, о котором речь пойдёт в другом разделе (Sumina 78).

Решить эту проблему можно несколькими способами, достоинства каждого из которых здесь не рассматриваются, поскольку эта тема заслуживает гораздо более тщательного и подробного обсуждения, чем позволяет данная статья:

  • избегание или снижение подверженности действию аллергенов (например, изменение диеты, использование воздушных фильтров и т.д.);
  • применение натуральных антигистаминных средств (например, кверцетина) (Bronner, Pearce);
  • применение традиционных антигистаминных препаратов;
  • альтернативные методы лечения аллергии (гомеопатия, снижение чувствительности, потенцированное ферментами);
  • традиционное лечение аллергии.

Людям с аллергиями, о которых они даже могут не знать, использование одного или сочетания нескольких перечисленных выше вариантов может помочь не просто устранить симптомы аллергии, но и улучшить состояние здоровья в целом. Конечно, для того чтобы правильно решить проблему аллергии, необходимо чтобы аллергию диагностировал квалифицированный врач-клиницист.

Источник: https://articles.shkola-zdorovia.ru/prosto-skazhi-net-oksidu-azota/

NO (оксид азота)-молекула жизни

NO (оксид азота)-молекула жизни

Работу выполнила:

ученица 8 «Б» класса

Пичугина Марина

Руководитель:

Мартьянова Л.В.

учитель химии

Арзамас,2015.

Оглавление

Введение. 2

— Объект, предмет,цель исследования 4

— Исторические факты открытия оксида азота.Нобелевская премия. 4

— Чем продиктован все возрастающий интерес к окиси азота?. 5

— Оксид азота и его соединения. 8

— Оксид азота(II) 8

9_Toc347351661

Выводы.. Ошибка! Закладка не определена.

Читайте также:  Химический источник тока: принцип действия, классификация

Использованные источники информации. 2

Современные представления о регуляции клеточных процессов позволяют особо выделить некоторые химические соединения, обладающие полифункциональным физиологическим действием. К числу таких соединений с полным основанием можно отнести оксид азота.

Данный свободный радикал способен оказывать как активирующее, так и ингибирующее действие на различные метаболические процессы, протекающие в организме млекопитающих и человека.

Несмотря на многочисленные исследования, значение оксида азота в системной регуляции гомеостаза клеток и тканей не вполне понятно.

Обратите внимание

Для широкой публики эта тема впервые была обозначена в 1992 г., когда журнал «Science» назвал окись азота (NO) молекулой года.

Прошло еще 6 лет, и ученые, сыгравшие особую роль в ее изучении, получили заслуженную награду: 10 декабря 1998 г. в Стокгольме (Швеция) трем ученым из США Роберту Ф. Ферчготту, Луису Дж. Игнарро и Фериду Мураду была вручена Нобелевская премия за 1998 г. в области физиологии и медицины за «открытие роли оксида азота как сигнальной молекулы в сердечно-сосудистой системе».

Молекула окиси азота оказалась универсальным биологическим агентом.

Еще лет двадцать назад сама постановка вопроса об универсальной биологической роли оксида азота казалась дикой: оксид азота – сильнейший промышленный загрязнитель, его рассматривали исключительно с точки зрения вредности для всего живого, ведь окисление оксида азота в атмосфере оборачивается кислотными дождями. Огромное его количество, содержащееся в табачном дыме, образует канцерогенные вещества.

Объект исследования:

-оксид азота NO

Предмет исследования:

— выяснить, на сколько эффективно влияние оксида азота на организм.

Цель исследования:

— каковы положительные и отрицательные стороны влияния NO

Задачи:

-по литературным источникам изучить химическое состояние NO

Исторические факты открытия оксида азота. Нобелевская премия.

Нобелевская комиссия Каролинского медико-хирургического института в Стокгольме назвала лауреатами Нобелевской премии в области физиологи и медицины за 1998 год трех американских ученых:

Р. Фурхготт. Л. Игнарро. Ф. Мурад.

Доктора Роберта Фарчготта (Robert F. Furchgott) Доктора Луиса Игнарро (Louis J. Ignarro) Доктора Ферида Мюрада (Ferid Murad)

Они удостоены Нобелевской премии за открытие “окиси азота как сигнальной молекулы в кардиоваскулярной системе”. Факт образования газа в клетке, который, минуя мембраны, может управлять функциями других клеток, признан неизвестным до сих пор, новым принципом подачи сигналов в живых организмах.

Доктор Роберт Фарчготт, 82-летний фармаколог из Университета штата Нью-Йорк, изучая действие лекарств на сосуды, впервые обратил внимание на то, что одинаковые лекарства в одних случаях вызывают расширение, а в других – сужение тех же сосудов.

Ученого заинтересовало, могут ли противоположные результаты зависеть от состояния внутренней поверхности (эндотелия) клеток внутри кровеносных сосудов.

В 1980 году в простом эксперименте с ацителхолином он показал, что это вещество расширяет кровеносные сосуды в тех случаях, когда стенка сосудов не повреждена. Р.

Фарчготта пришел к заключению, что неповрежденные эндотелиальные клетки продуцируют неизвестный доселе сигнал, расслабляющий гладкую мускулатуру сосудов. Этот сигнал молекулы ученый назвал EDRF, что означало «эндотелиум-получательно-распределяющий фактор».

Важно

В поисках неизвестной сигнальной молекулы, причем независимо от Р. Фарчготта, принимал

участие доктор Луис Игнарро, 57-летний ученый из Калифорнийского университета в Лос-Анджелесе (UCLA). В поисках химической природы EDRF Л. Игнарро провел блестящую серию исследований и в 1986 году пришел к выводу, что EDRF идентичен окиси азота.

62-летний врач-фармаколог Ферид Мюрад из Медицинской школы Техасского университета в Хьюстоне анализировал то, какой фармакологический эффект дают нитроглицерин и другие родственные сосудорасширяющие вещества. В 1977 году он установил что эти вещества освобождают окись азота, который расширяет гладкую мускулатуру клеток.

Идея о том, что газ может регулировать важнейшие клеточные функции, захватили его, однако в то время у него не было достаточных экспериментальных обоснований для подтверждения этой идеи.

После того как Р. Фарчготт и Л. Игнарро в июле 1986 года представили свои материалы на конференцию, это вызвало лавину исследований в различных лабораториях во всем мире. Это было первое открытие того, что газ может действовать как сигнал молекулы в организме.

Оказалось, что окись азота защищает сердце, стимулирует мозг, убивает бактерии и т. п.

Дальнейшие результаты подтвердили, что окись азота является сигнальной молекулой, в первую очередь для кардиоваскулярной системы, а также для ряда других функций, на пример, как сигнальная молекула в нервной системе.

Бесцветный газ – окись азота – всегда считался вредным для организма человека.

Инженеры разрабатывают более совершенные двигатели внутреннего сгорания, в меньшей степени загрязняющие атмосферу окисью азота, конструируют системы регенерации окиси азота в другие вещества.

Совет

Но в конце ушедшего века ученые неожиданно обнаружили, что окись азота присутствует в любом живом организме в довольно больших концентрациях. И не просто присутствует, а управляет важнейшими физиологическими процессами.

Окись азота (химическое название – оксид азота) – новая «путеводная звезда» в медицине, указывающая направление поиска лекарственных средств против множества болезней. Именно так считают сейчас большинство исследователей.

Чем продиктован все возрастающий интерес к окиси азота?

Оказалось, что окись азота управляет как внутриклеточными, так и межклеточными процессами в живой клетке. Многие болезни – гипертония, ишемия миокарда, тромбозы, рак – вызваны нарушением физиологических процессов, которые регулирует окись азота. Именно по этой причине окись азота представляет огромный интерес для биологов и медиков самых разных специальностей.  

Нейрофизиологи и нейрохимики интересуются окисью азота в связи с тем, что она управляет важнейшими процессами, происходящими в нервной системе. Высшая нервная деятельность человека во многом обусловлена прохождением импульса с одной нервной клетки (нейрона) на другую – так называемой синаптической передачей.

Если попытаться описать этот процесс в двух словах, то можно сказать, что при прохождении нервного импульса из окончания одного нейрона «выбрасывается» молекула сигнального вещества – нейромедиатора (например, ацетилхолина, глутамата), которую «захватывает» специальный белок (рецептор) на мембране нервного окончания другого нейрона. Затем сложная цепь биохимических и электрохимических реакций обеспечивает прохождение нервного импульса по этому нейрону. Когда сигнал достигает нервного окончания, снова происходит выброс из него молекулы нейромедиатора и так далее. Оказалось, что окись азота активирует процесс выброса нейромедиаторов из нервных окончаний во время синаптической передачи. Более того, молекула окиси азота сама может играть роль нейромедиатора, то есть непосредственно передавать сигнал с одной нервной клетки на другую. Неудивительно, что окись азота присутствует во всех отделах головного мозга человека: гипоталамусе, среднем мозге, коре, гиппокампе, продолговатом мозге и др.

Таким образом, в мыслительной деятельности окись азота является и непосредственным участником, и косвенным регулятором. Что касается телесного существования, то и здесь ее роль не меньшая.

· Кардиологи и специалисты, изучающие систему кровообращения, интересуются окисью азота, поскольку она регулирует расслабление гладких мышц сосудов и синтез так называемых «белков теплового шока», которые «защищают» сосуды при ишемической болезни сердца.

· Гематологов окись азота интересует в связи с тем, что она тормозит агрегацию (слипание) тромбоцитов, влияет на перенос кислорода эритроцитами, а также на реакции с участием химически активных молекул (свободных радикалов) в крови.

· Иммунологов окись азота интересует потому, что активация клеток, участвующих в иммунном ответе, – макрофагов и нейтрофилов – сопровождается высвобождением этими клетками окиси азота.

· Онкологи проявляют повышенный интерес к окиси азота из-за ее предполагаемого участия в процессе развития злокачественных образований.

· Физиологи, занимающиеся проблемами регуляции водно-солевого обмена в организме, и нефрологи интересуются окисью азота по той причине, что она регулирует почечный кровоток и солевой обмен в почечных канальцах.

Но и это еще не все. В последние годы лавинообразно нарастает поток информации о влиянии окиси азота на функционирование генома.

Судьба человека определяется его поведением и характером, на которые, в свою очередь, влияет состояние его души и тела. Значит, судьба человека в некотором смысле связана с окисью азота.

Оксид азота и его соединения.

·

Оксидом азота называется инертный газ, который не обладает ароматическими качествами и цветом. Есть несколько соединений:

· Оксид (I) несолеобразующий. При условии высокой концентрации может спровоцировать возбуждение нервной системы. По-другому его называют веселящим газом. Свое применение оксид азота нашел как наркоз слабого действия в медицине;

· Монооксид азота – это газ, не обладающий цветом. Свойством оксида азота (II) является слабая степень растворимости в воде;

· Оксид (III) – это жидкость, обладающая темно-синим цветом. В нормальных условиях проявляет неустойчивость. При условии взаимодействия с водой способен образовывать азотистую кислоту;

· Оксид (IV) обладает газообразной формой, его окрас – бурый. В таком состоянии вещество тяжелее воздуха, поэтому способно легко сжиматься. Одним из свойств оксида азота является способность взаимодействовать с водой и щелочными растворами; Оксид (V) является веществом в кристаллической форме без цвета. Проявляет свойства сильного окислителя

Оксид азота (II) (Монооксид азота, окись азота, нитрозил-радикал) NO

Рассмотрим оксид азота (II)NO – несолеобразующий оксид азота. Он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

    Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N2O2.

Жидкий оксид азота(II) на 25 % состоит из молекул N2O2, а твердый оксид целиком состоит из них.

Получение.
    Оксид азота (II) – единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200-1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

    и тотчас же реагирует с кислородом:

    При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.
В лаборатории его обычно получают взаимодействием 30%-ной HNO3 с некоторыми металлами, например, с медью:

    Более чистый, не загрязнённый примесями NO можно получить по реакциям:

Обратите внимание

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr2O3 (как катализаторов):

Химические свойства.
    При комнатной температуре и атмосферном давлении окисление NO кислородом воздуха происходит мгновенно:

    Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

    В присутствии более сильных восстановителей NO проявляет окислительные свойства:

    В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.
Физиологическое действие.     Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках – ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).

    Как и все оксиды азота (кроме N2O), NO – токсичен, при вдыхании поражает дыхательные пути.

    За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO, участвует в регуляции систем внутри и межклеточной сигнализации. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение, предотвращает агрегацию тромбоцитов и адгезию нейтрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет и др.

    Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO2 и каротиноидами.

    Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни энзимы и ингибирует другие, таким образом, участвуя в регуляции клеточных функций. По сути, монооксид азота является локальным тканевым гормоном. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой – давать провоспалительный эффект.

    Оксид азота способен инициировать образование кровеносных сосудов.

В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток.

Важно

С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза (запрограммированный процесс клеточного «самоубийства», направленный на удаление клеток, утративших свои функции).

В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответствен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Выводы

Использованные источники информации

Источник: https://kursak.net/no-oksid-azota-molekula-zhizni/

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]